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INTRODUCTION 

The distortions of a laser beam produced by density and thermal varia- 

tions In a fluid medium have been the subject of many investigations. In 

general, such studies on the effects of heat deposition from the laser beam 

upon the propagation of that beam can be classified Into two groups, depending 

upon whether time dependence Is considered. Most available experiments are 

conveniently understood by reference to theoretical studies of the gross 

effects of thermal deposition and fluid motion, which assume that a steady 

state will be achieved for the deflection and distortion of the laser beam. 

On the other hand, several years ago It was shown that one of the solutions 

for beam propagation was unstable. In the sense that small distortions In the 

beam would be amplified If the power level was greater than a threshold determined 

by the thermal conductivity of the fluid. For the most part, those investiga- 

tions that do assume some time dependence for the beam pattern were concentrated 

on studies of the growth of small amplitude perturbations from an Initially 

uniform beam. 

The work described In this report was motivated by the discovery of 

Instabilities In the system of equations describing electromagnetic wave 

propagation and fluid dynamics. Initially, It appeared desirable to attempt 

an exploration of the extended development of the instabilities noted for a 

uniform beam. The basic equations are discussed In Part I, and In Part II the 

linearized stability analysis Is presented along with an evaluation of the 

threshold for these growing waves. To follow the growth of the disturbances, 

computer studies were undertaken. In the course of these studies It became 

apparent that there was some merit to Introducing a new concept to judge the 

value of an algorithm for computing the solutions of a system of partial 

-1- 



differential equations. This concept was called "utility", and Is discussed 

In Part III, along with several examples of Its application to simpler partial 

differential equations. The advantage of this concept Is that It Is 

relatively easy to apply to complicated systems of partial differential 

equations» whereas the stability concept leads to a very complicated procedure 

for deciding on the value of a numerical routine. In Part IV are presented 

the results of a calculation of beam distortion for a very high Intensity 

pulse propagating through air for several kilometers. Analytical arguments 

are advanced which suggest that the qualitative features of the distortions 

are correct, which lends credence to the computer output. 

Speed and memory size In a computer place certain restrictions on one's 

ability to Investigate phenomena In the laser beam problem. In the attempt to 

calculate distortions of the type predicted by the linearized Instability 

analysis, cylindrical symmetry was Imposed on the problem In order to 

facilitate the computer calculation. Had this not been necessary, or had some 

other independent variable been eliminated rather than the angle about the 

beam axis, much more pronounced evidence of beam and fluid Instabilities would 

likely have been observed for substantially lower powers, powers that may be 

achievable. Arguments supporting this proposition are contained im Part V. 

Part VI of this report contains an analytic discussion of beam bending 

and thermal blooming for a slab beam propagating through a wind. A formula 

Is derived which provides for the transition between two regimes In which 

conduction and forced convection, respectively, dominate the dissipation of 

heat deposited In the medium from the laser beam. This formula appears to be 

useful for the analysis of several experiments. 
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PART I 

BASIC EQUATIONS 

When an Intense laser beam propagates through a fluid, many Interesting 

phenomena take place. This laser-fluid system can be described by a macro- 

scopic model which Involves Maxwell's equations, the Navler-Stokes equation, 

an energy conservation equation, and the continuity equation for fluid motion. 

These equations which describe the behavior of Intense electromagnetic beams 

and the associated sound and thermal fluctuations, are coupled by stimulated 

Raman scattering, electrostrlctlon, the high frequency Kerr effect, absorption 

heating, and the density and temperature dependence of the dielectric constant. 

In this paper, a systematic discussion Is presented for an Intense laser beam 

propagating through air, which has a negligible Kerr constant. If the 

frequencies are outside the Raman scattering range, the Instabilities are 

primarily caused by optical-accousti'c coupling of the laser beam and the gases. 

These effects are of long duration compared to those of self-focusing. As the 

beam passes through air, the Intensity profile Induces a nonunlform temperature 

gradient transverse to the propagating direction of the beam, due to the energy 

absorption from the beam. This thermal non-equilibrium and electrostrlctlon 

together cause the generation of a density gradient and hence a sound wave. 

These density changes react back on the Incident beam through changes In the 

dielectric constant. A detailed mathematical description of the model adopted 

here will be presented. 

Maxwell's equations for the electric field vector E In a charge and 

current free region can be employed to yield the wave equation for the 

electric field 
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2 m 
VX (V X E) ---V^-kÖ. (1) 

where the permittivity, e. Is taken to be 

e - eL + e2 ? (2) 

Here and throughout this paper, Heavyslde-Lorentz units are used for electrical 

quantities. These units are sometimes called rationalized gausslan units. The 

time average In (2) Is to be taken over a time large compared with an optical 

period. Many such time averaged terms will be encountered below and In all 

cases an average over "several" optical periods Is Intended. Such average 

quantities may, of course, still be functions of time, but will vary slowly on 

the time scale of an optical period. 

For an Isotropie medium free of charge, the electric displacement 
-»■ 

vector Is parallel to E and Is divergence!ess. Under these conditions one, 

therefore, has 

V • (ef) - 0 (3) 

From (3) one obtains 
-»■   -»• 

V • E = - E • V (log e). 

Substituting this expression In (1) produces 

V2 E + 7 (I • V log e) - -I-^-UEi (4) 
cc   3r 

Since processes Involving acoustical and thermal effects are considered 

here, the change In e over an optical wavelength   s small compared with the 

changes over a typical acoustical length.   Thus the term Involving Ve will be 

neglected In (4), leaving: 

c272E«^7(eE). (5) 
it* 



When processes involving electronic states of the molecules of the fluid are 
-► f 

Important, the Ve term must be retained In the wave equation for E. 

The permittivity e Is, In general, a function of the mass density p 

of the fluid and the temperature T. In fluids (rlj will be small except for 

such large temperatures that there Is significant population of vlbratlonal 

modes of the molecules. When anharmonlc effects In the vlbratlonal spectrum 

become Important, careful attention must be given to the dependence of e on T 
j 

at constant density.    For a considerable range of density and temperature, 

however, (llj   « o, so that e can be taken to be a function of p only.   The 

dependence of e on density can be approximated by the formulas resulting from 

Lorentz-Lorenz local field theory.   This approach leads to the formula 

#)T"
(£-1'J£t2,^L-')'—L) (') 

The second term on the RHS of (6) Is usually extremely small because (e - e. ), 

the nonlinear piece,Is small. Furthermore, particularly In gases, (e. - 1) Is 

extremely small. For the situations considered In the present analysis, both 

these factors are small, so that (6) Is conveniently simplified to 

M*^1^- <*) 
This Glausius-Mossottl relation will be used later In the detailed analysis of 

the laser-fluid   equations. 

The equation for the fluid motion, the Navler-Stokes equation. Is 

Dvi 3        1—r pDr= ^+^r0^+ä~^< (7) '1    axj wij    axj uij 

-»■ 

where v Is the velocity of a material element of the fluid, g Is the gravita- 

tional acceleration vector, a^. Is the viscosity stress tensor,^ J oj. is the 

Interaction stress tensor coupling the electromagnetic field to the fluid. ■' 
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The time derivative ijr Is the "material" derivative; I.e.. one that follows 

the motion of a material "particle" of the medium relative to a fixed coordinate 

system.   This derivative can be expressed in the form 

V-^-'f >• (f) 
The viscosity stress tensor is given, to a first approximation, by the 

linear terms of an expansion in powers of the viscosity coefficients: 

(av.     3vA 3V|. 

4+^■^T1, ^'U (9) 

where n is the coefficient of shear viscosity and n' is the compressional 

viscosity coefficient. Sometimes n and n1 are called the "first" and "second" 

viscosity coefficients and were previously denoted \i and ?., respectively, in 

the notation used by Stokes. The coefficient n* Is occasionally called the 

dilational viscosity coefficient. 

The interaction stress tensor for the electromagnetic field and the 

fluid will be taken to be 

"V-^j-Tt-^Jv^j (10) 

A derivation of this tensor, valid for static electromagnetic fields is given 

on page 67 of Reference [2].    In a vacuum, this expression becomes the familiar 

Maxwell stress tensor 

0,1j = ElVlE   6ij • 

This tensor is not strictly correct for optical fields.   Expression (10) results 

from a derivation with an isothermal constraint.   A similar derivation with an 

adiabatic constraint, actually an isentropic constraint, gives the same result, 

except that the partial derivative (||)   at constant temperature is replaced 
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by (~) , the derivative at constant entropy.   The difference In these two 

constraints Is contained In the thermodynamlc relation 

<|I - 44+« YCp 
31 

L\ 

(11) 

where C» Is the specific heat per unit mass at constant pressure, y Is the 

ratjp of specific heat at constant pressure to that at constant volume, 3 Is 

lermal expansion coefficient Mw) ■ - l(|f) » and vs 
is the Isentroplc 

3Pi velocity of sound,Kl|^ 

The difference term In (11) Is very small for reasons that have already 

been discussed, f||j » 0. The term In square brackets Is roughly j.   Thus, 

for the present purposes. It will suffice to use the "Isothermal" stress tensor 

given In (10). Actually, neither constraint Is strictly valid, but corrections 

would be small and would necessitate a detailed examination of fluid boundary 

layers and the explicit mechanisms of heat deposition In the control volume. 

The pressure P occurring In (10) Is the thermodynamlc pressure. This 

pressure Is not identical with the mean pressure, pm = - y L^^.  + o^], but Is, 

rather, the thermodynamlc Intensive variable that enters Into the equation of 

state of the fluid: 

P = P(P.T) (12) 

Combining equations (7), (9), and (10), one obtains 

Dv 
P t s P9 " vp + fes + fv1 sc (13) 

where the electrostrlctlve force density f     Is obtained by substituting (10) In 

17): 
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fes-<-^UE2)+v|f p(|)T]+£(E.7)l> 

-<-^2[(t)T'
pt(^r7r]-E(E-v)f+ 

The time averages here are taken over several optical periods and the relation 

(3), V • (el) - 0 has been used to get (14), 

■♦• 

The viscous force density fy*sc» appearing In (13), Is obtained by 

substituting (9) In (7): 

fv1sc - n v
2 v + (n + n') v (v • v) (15) 

where terms Involving 7n and Vn* have been dropped. In other words, n and n' 

have been taken to be constant throughout the fluid. This Is a good approxima- 

tion for gases where n, for example. Increases slightly with temperature. 

Models, based on the Lennard-Jones potential energy function, suggest that 

n ~ /f . In liquids, on the other hand, the viscosity decreases rather 

strongly with Increasing temperature, so that gradients of the viscosity 

coefficients could have some small effect. 

Putting (14) and (15) In (13), one can write 

I"«-W5F^M?T 
+ n v2 v + (n V) v (v . v) (16) 
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The equation of continuity of matter In the fluid Is 

§*? • (pv) = 0 (17 ) 

The general equation for heat transfer In the fluid Is 

pT M'V v '^ (18a) 

where s Is the entropy per unit mass In the fluid, * Is the viscous dissipation 

function, and q is the total energy flux vector. The flux q can be divided Into 

several parts: 

5 ■ 3cond * 5rad * F (t*) 

where F is a "material" Poyntlng vector to be discussed below, and qcond and 

qra(j are the parts due to conduction and thermal radiation.    In particular, 

5cond ^ " " T (18<:' 

where the thermal conductivity, < , a function of p and T Is defined by this 

relation. The thermal radiation flux, qra(j> can be approximated, for small 

temperature differences, by Newton's law of cooling: 

V. qrad = p Cvq (T-T0) (I8d) 

where C is the heat capacity per unit mass at constant volume', T - T is the 

local temperature excess, and q Is a radiation coefficient Introduced by Stokes. 

Because this effect Is extremely small In the parameter regime of the present 

analysis, this thermal radiation term will be dropped. 

The viscous dissipation function, 4, appearing In (18a) Is given by 

3V. 

♦n E a1j IxT (l8e) 

J 

Combining (18a), (18b), (l8c)i and dropping the term shown In (18d), one obtains 
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s«so(T.p)+^(|f) (21) 

pTill = v ^* ^^ ■7,ir (19) 

The LHS of (19) can be re-expressed, and the entropy eliminated, by 

using the thermodynamlc relation 

T Ds   r DT Cv ^Y " 1 ^ Dp /„v 
pTot'^vDt—i—m (20) 

where the thermodynamlc parameters entering here have all been defined above. 

Actually (20) Is obtained only If one neglects the dependence of the state of 

the fluid on the electric field. Strictly speaking, the entropy Is a function 

of p, T, and E. As shown on page 51 of Reference [2], one has the approximate 

expression 

X 
Since (l&] Is small, as discussed above, It Is consistent to drop the very 

small second term In (21) and thus get (20). 

Combining (19) and (20), one then gets 

PCvS-JL-l {Jl^ + V (KVT).V.F       (22) 

The term V • F In this equation Is associated with a model for the absorption 

of electromagnetic energy by the fluid. A linear absorption coefficient, ot, 

for the deposition of electromagnetic energy In the fluid Is to be Introduced. 

This coefficient Is taken to be Independent of the frequency of the electro- 

magnetic radiation, so the model will not be valid for frequencies near the 

resonance lines of the molecules In the fluid. In this model, the electric 

field will be damped by a factor e   where z Is the direction of propagation 
-y 

and the energy deposited In the medium Is taken to be ac*^" E = aPL where P. 
2 

Is the laser Intensity In (ergs/sec)/cm . It Is this term that the divergence 

of F represents In (22). This "material" Poynting vector F Is understood to 
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be the time average 

F-<FT-^0> (23) 

where Fy = CE x B Is the total Poyntlng vector, whereas FQ IS the Poyntlng 

vector that would result from the same fields In the absence of absorption. 

The time average is taken, as usual, over several optical periods. 

In order to be consistent In the Introduction of this absorption model, 

certain terms should be added to the wave equation and to the Navier-Stokes 

equation. Specifically, the term ac ^ ||' should be added to the RHS of (5) 

and a vector C should be added to the RHS of (16), The counter term C Is 

given by 

J-Ht)T;5r (24) 

This Is strictly a counter term whose purpose Is to remove the a dependence 

from the Navier-Stokes equation. No physical significance Is attached to this 

term. 

Making these modifications and collecting the operative equations for 

convenience, the following set of nonlinear coupled partial differential 

equations Is obtained for description of the macroscopic representation of 

the laser-fluid system. 

WAVE EQUATION 
9 

c Vl - -^ (eE) + ac ^ (*€E) (25a) 

e = eL + e2 ? (25b) 

T Instead of adding this term explicitly, the same effect can be obtained by 
considering the permittivity, e, to be complex and frequency dependent. 
The present procedure Is used to avoid the logical difficulty of putting 
frequency dependence In the space-time wave equation. 
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NAVIER-STOKES EQUATION 

+ n v2 v + (n + n') v (v • v) + C (26a) 

HEAT TRANSFER EQUATION 

3v.  r/3v.  DvA    3v.  I  3v. 

♦^^^•|nR*i4rn,^^j^       (27b) 

FLUID CONTINUITY EQUATION 

EQUATION OF STATE 

|f + V.(pv)-0 (28) 

P - P(P.T) (29) 

Due to the complexity of this set of equations, It Is not possible to obtain 

exact solutions analytically.   Only the linearized solutions have been 

discussed. In the next section a linearized analysis of this set of 

equations Is presented and. In subsequent sections, the nonllnear1 ties will 

be considered. 
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PART II 

LINEARIZED ANALYSIS 

Linearized analysis Is a standard pertubatlon technique. In this 

scheme, It Is assumed that each of the dependent variables in the problem can 

be expressed as the sum of Its slowly varying zeroth-order component and a 
161 

small first-order correction.  In this way, a set of linear equations for 

small disturbances Is obtained. This approach to the analysis of the laser- 
Mi fluid system was first Investigated by Brueckner and Jorna. J In the present 

approach, two variables are used to describe the perturbed electromagnetic 

field, one for the component of the field which Is vibrating In phase with the 

primary beam and one for the component out of phase. In this way, the four- 

photon coupling induced by periodic fluctuations In the dielectric constant 

can be included. This coupling was not Included in the original formulation 

given by Brueckner and Jorna. The dispersion relation for these linearized 

equations has been evaluated and Is more complicated In structure than that 

presented by Brueckner and Jorna. For propagation through air, however, the 

numerical differences are minor. The wave with the largest growth rate, 

resulting froiii resonant Interactions between scattered electromagnetic waves 

and the thermal wave, propagates almost perpendicularly to the laser beam. 

The direction Is such that the change In frequency of the scattered electro- 

magnetic wave and the frequency of the thermal wave, which Is zero, are 

approximately the same. 

-A.4e&llid^analys1s will now be presented. Separating each quantity 

into a zeroth-order and a first-order perturbation, one has 
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E«E(0J + E(1J (30a) 

P « PQ + P] (30b) 

1«^ + ^ (30c) 

e « le. 

p ttPo + *$\ + TI(IT)P 
S
 
P
O ^"I 

+
T-^O 

T
I   ^ 

[eL(0) + Pl(^)T 
+ h^} * 

^^^^/^J^^o)^ 
« e0e+ e, (30e) 

where PQ, TQ, PQ, e^o)* *n<i e2(0) are ta'<en t0 be constants describing the 

unperturbed medium, vs Is the Isentroplc velocity of sound In the unperturbed 

medium, y Is the ratio of specific heats, ß Is the coefficient of thermal 

expansion for the fluid, and the zeroth and first order dielectric constants 

are given by 

eoe E eL(0) + e2(0) ^7 <30f) 

+ 2 e2(0) W1^ (309) 

The indicated averages are taken over several optical periods and the subscript 

zero on the partial derivatives Indicates that they are to be evaluated at the 

density and temperature of the unperturbed fluid. 

When equations (30) are substituted Into (25a) and the zeroth-order and 

first-order terms are separated, one gets 
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m^.^^i.i^M.,        ,3,,, 

There would have been an additional small term -v[En • v log e] on the RHS of 0 
■* 

(31b), had equation (4) not been simplified by dropping Ve to get (14).    Since 

o Is treated as a first order quantity» a term — hr- was also dropped 

from the RHS of (31b) oe 

The primary electromagnetic wave Is chosen to be a linearly polarized 

plane wave propagating In the z-dlrectlon: 

t       ail   J^'^e'^.cc   - *(0) B 7 ey E0 e e + c-c- " 

- gy |E0| e   z     cos (c^t - kL2 + 6) (32a) 

where c.c. stands for "complex conjugate" and 6 Is the phase of the complex 

constant, EQ.   With 

IC.C 

i ■ at. • (32b) 
oe 

equation (32a) gives a solution of (31a). except for negligible terms of 
2 

order a . 

The first order correction E/,* described by (27b) is taken to be of the 

form 

* l -   r   1(ÜJ+t - Kf • x +6)        -1(a) t - k   * x + ö)]   ' I z 

E(l)"Iey[fe +ge      "       " Je + c.c. 

(33a) 
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where f and g are complex amplitudes, 6 Is the phase of the primary beam, and 

aj+ E u). + a) (33b) 

k+ = kL ez + k (33c) 

2 _ L 2 A ,.2 

It Is presumed that 

and that 

k/ - k^ + r + 2 kg kL {33d) 

b) « ü). (3^*) 

|k| « !(,_ . (34b) 

Under this assumption. It follows that ez • k+is approximately equal to k^.   One 

can easily check, now that the factor 
0    T 

e^2 

appearing In (33a) Is consistent with the term containing a In (31b) to a very 
■♦•    -*■ 

good approximation. Thus, E/Q% and E/^ both have the same damping factor 

01   7 

Because of the mathematical complexity. It Is convenient to express the 

first order electric field E/,% In another form.   Equation (33a) Is rewritten: 

iLj - e   e"7     [Ej cos^t •- l^z + 6) + E^' s1n(a)Lt - kLz + 6)]     (35) 

where 

and 

= |f + g| cos(a)t - k • x + 6') (35a) 

E.. M .^y^t-k.;)^^ = 

" |f - gi cosUt - k • x + 6") (35b) 
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where 6' Is the phase of the complex number (f+'g) and 6" Is the phase of 

i(f-g).   Since u « a^, the amplitudes Ej and EJ are slowly varying functions 

of time compared with the rapidly varying primary beam. 

Using (32a) and (35)» the time averages appearing In equations (30f) and 

(30g) are easily computed and found to be: 

^-i|E0|2e-« (36) 

and 

E(o) E(1) • \ |E0| EJ e-012 - ^ |E0|   |f+g| e'aZ cos(a)t - k • I + 6') 

4lEol (^9) ei(a,t " ^ J) e-az + c.c. (37) 
■ ■ 

The first order sound and thermal waves are taken to be 

i(wt - ^ -^ + c.c. (38) 0 ■;(;)•" 
where p1 and T* are complex amplitudes. The frequency w and wave vector k 

appearing In (38) are the same as tnose shown In (33b) and (33c). These waves 
+ 

at frequency + (w. - a;.) are often called thermal Raylelgh waves or Brlllouln 

waves. 

The particle velocity v can be taken to be a first order quantity for 

the case where the unperturbed medium Is stationary. For this reason and 
-»■     ■* 

because the unperturbed'medium Is taken to be uniform, so that V PQ and V TQ 

are zero, there Is no difference In first order between »Jte*- and the partial 

derivative -^-. Thus, all of the material derivatives reduce to ordinary 

partial derivatives and there Is no distinction between Eulerlan and Lagranglan 

representations In the first order calculations. The continuity equation (28) 

becomes 

-17- 



3pl    - 3^+PoV.V'O (39) 

and the Navier-Stokes equation (2öa) becomes 

P0 || - [n 7
2 7 + (T, + n') ? (7 • 7)] - -7 P, 4 vp 'e - ']'E t 2)] 

v.2 

1 ~5— ■*•  * 
I E(0) Ve + c 

= - -y-pp, + SPQTT,] + 

♦[Hi^-^^H (40) 

The Clausius-Mossottl relation (25c) and equation (30d) have been used to 

obtain (40). ~v 

Now (39) and (40) can be combined In such a way as to remove v from the 

equations. To accomplish this, (39) Is differentiated with respect to time and 

the divergence of (40) is taken. The quantity |rV'V = V« |^ Is then 

eliminated between the resulting equations to produce: 

l^nZ   (e - 1)(e + 2) „2? F  l/n. - E/M V e - ■» ^ '■V E/nx E/,. (41) e 
 3  ^0) v e 3     v ^0) ^l) 

where the Clausius-Mossottl relation has again been used and the extremely small 

term, j (e - 1) aE e • Ve,has been dropped along with other second order 

terms. The gravity term is also dropped In (41) because it is of no interest in 

the present considerations. The counter term t has performed the task for which 

it was introduced. The net effect of the term is the instruction that the 

Laplacian ccting on t7T\  KT* should not act on the damping factor e~aZ. 
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For convenience, the following notation Is Introduced: 

v 2 

u2 = -S- .  so that (42a) 

u • Isothermal speed of sound 
In the unperturbed medium 

A - V3r/T 
+ \w)j E(o] ^        3 (42b) 

^(^T)*^)^ (42C) 

N = tM£Ml (42d) 
p0 

In this notation, V e becomes, to first order. 

2  ± [(l|)T ^ * (lf)9 "i] - ^ + BV2TI     <"> 
and equation (41) becomes 

J 
^-^©'"Vp^apov^]* 3' 

3t' 

e. -1 + ^ K ^»1 + BV2T1 ) + ^oe*2^2^^^] 
(44) 

To first order, the thermal transfer equation (27a) becomes 

LE(0) + 2E(0)E(1)J * 
3T,  C (Y-1) 3P,   P     r— . . 

pocv # - JSr- ars ^"i+ «^ LE(o)+ 2E(0)E(1) I *   (45) 

Upon substitution of quatlons (32a), (35). (36), ( 37) and (38) Into 

equations (31b), (44), and (45), the Fourier transform of the set of linearized 

equations Is obtained and the corresponding Fourier amplitudes are related by a 

set of four simultaneous linear equations. Two of these equations result from 

(31b) because two different frequencies enter Into that equation. The constant 
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term ac/ej" E/QX IS dropped from (45) because It corresponds to a uniform 

linear Increase In the temperature of the medium which Is of no Interest In 

the dispersion relation.   The damping factor 

e-tZ 

divides out of (31b)( the first order wave equation, but the factor e~ 

entering (44) and (45) with the ETTXTT terms does not divide out.   There are 

two alternatives:   One could go back and try to Insert a double damping factor 

In (38), but this would be rather artificial.    Instead, since a Is small, the 

damping factor Is merely replaced by 1 In (44) and (45).   Thus the considera- 

tions below pertain only to values of z small enough that the decreasing ampli- 

tude of the electromagnetic waves does not significantly alter the equations 

for thermal and sound propagation.   The four equations relating f, g, p1, and 

T' are: 

* [l AEo4}' * [l BEoM+] T' ' 0 («> 

+ ^AEoW?lp• +|}BE0a)f|r «0 (47) 

[ac^oeEo] f + [oC^eEo] 9 + ['^IP- *j ** + 

+ [-Kk2-1p0CvJ T' - 0 (48) 

-20- 



+ L2-Mh\rZ'{u2 - ^- AE*k2l P' + 

+ [(-u2ßpo + ^f--BEo) k2] r " 0 (49) 

Throughout these equations, E has been written In place of |E 1. Since only 

|E | appears, the phase 6 does not enter these equations. Therefore, without 

loss of generality. E will be considered to be real and positive. The con- 

sistency condition for these four equations Is the vanishing of the determinant 

of the coefficients of f, g, p' and T'. Since In (48), and also In (49), f 

and g have the same coefficient, this 4X4 determinant can be written as the 

sum of two 3X3 determinants after replacing the first column by the difference 

of the first and second columns. These two 3X3 determinants may then be added 

to form a single 3X3 determinant after absorbing the external factors Into the 

top rows. Expanding the resulting 3X3 determinant along Its top row and setting 

the result e^ual to zero, one obtains the following relation between the fre- 

quency and the wave vector k, the dispersion relation for the system: 

+ B<1 

• ^[(4 (cV - e0/_)  ♦ a..2 (c2k2 - c0/+)\ (50) 
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In order to put (50] In a slightly more compact form, the following abbrevia- 

tions are Introduced. 

• - < 
M0 V 

n     =  »'T" • Index of refraction of unperturbed medium 
2 

oe  o I. = •K—  • power In incident laser beam/unit area 

A- = ^|_. AE2 
o   o 

n« - QC  D o 
B =^"B^ 

^ -= (A* -1^ 

Z^K, a {chl - eoeü)?) 

The dispersion relation can now be expressed In the form: 

j(ü) - iK'k2)^2 - INwk2 - (u2 - A^k2] - (Y-DCU^B')^2 • 

-f (u- iK'k2) + l-gSS-dj2- B') + 

+ BJl|lfwk2+1^2e[W
2-1H.k2-(u2.A')k2][ 

Eo M * *J$\ 
•T\—%:—/ 

(51) 

(.52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

For comparison, the dispersion relation obtained by K. A. Brueckner and 

S. Jorna^ for frequencies outside the Raman scattering range Is: 
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where 

w[w2 - v*k2 - INuk2] CL + IL(Vü) + 16)k2 « 0 

t  =   Ik2 -  ZJJM   I  k.2)   -  At   "o/1)2  (n C     k   ) 
oe 

V   = ■ 

oe 

2A3v2al^ 
6   =  n  

n ' c oe   p 

(59) 

(59a) 

(59b) 

(59c) 

Although equation (58) is considerably more complicated In structure 

than equation (59), the general features of the two equations are the same. 

As a first approach to the analysis of (58), one should realize that (53) 
2 

relates the power In the primary laser beam to E'. Thus, the free modes of 

the system can be obtained by letting E2 -•> 0 In (58). With no power In the 

Incident beam, therefore, (58) reduces to 

[f-^'l le'l(u' - INuk2 - uV) - (Y-1) lAk2} 

• c 

c2(k2 + k2 + 2^3) - eL(0) (OIL + w)6 

.2/^2 (k[ + k - 2^3) - EL(0) {u^  - a)) (60) 

The first factor In (60) contains a non-propagating thermal wave and two 

damped sound waves coupled by the term (Y-l)uwk . The last two factors 

correspond to the four free modes for scattered, undamped electromagnetic 

waves: 

t't****?**** K\ where a « + 1 (61) 
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2 
specified by given values of k and k*. Two of the roots are low frequency 

(u) « h)L), whereas the other two have frequencies of the same order as the 

laser frequency. It Is clear that the roots at the high frequency should be 

eliminated, because it has been assumed previously. In evaluating time averages, 

that the perturbed solutions vary much more slowly than the optical waves. 

Therefore, factors like 

will be replaced by 

whei'f. 

[c2k2 - K«,$ m 

c
L(0)[2,\]fCLk* ' "+J ' (63) 

cL = « velocity of light In the medium  (64) 

Thus the free modes will Include three thermal-sound waves and two electro- 

magnetic waves. 

All of the terms In (6C) result from the left hand side of (58) because 

the right hand side Is proportional to the power In the primary laser beam. 

Now, as the power In the laser beam Is turned on, the right hand side couples 

the five free modes described by (60!). Additional tiny coupling arises Inside 

the left hand side Itself through the A1, B'^and ^lo)  tenns* 

For detailed consideration, the case of a primary laser beam at 10.6 y 

propagating through air at approximately 10oC and at standard pressure will be 

discussed. The numerical values for the parameters appearing In the dispersion 

relation are:'- ^ 

«L » 1.773 x 1014 sec"1.   kL = 5,920 cm"
1  p0 = 1.25 x 10"

3 gm/cm3 

N = 0.284 cm2/sec ß = 3.67 x 10"3 deg"1 
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Cv ■ 7.143 x 10   erg/gm deg y » 1.4 

ic' - 0.28 cin2/sec eo ' ' + 5-65 x 10"4 

n0 - 1 + 2.82 x 10'4 o » (3 x 10"7 cm"1) a0 

2 

uz « 8.39 x 108 (an/sec)2 -g  (3.831 x 10J) a 
v 

pl - 0.988 a0 tmd - (1.37 x lO"25 J*L ) I, 
poCv 0 ^r gmcin2      L 

A ■ 0.452 §jj- » (1.10 x lO'22 m s|c   ) IL 

A(liII. 24.7 cmLdea ^ (6^ x 10-21 an sec* deg) , 
gm gujj L 

eoe - 1 + 5.65 x 10"4 + (1.37 x 10"25   sec3g ) IL 
gm cm 

»2 _ ' _« _4 2 A' - (2.84 x 10"15 cin   sec ) IL + (1.38 x 10"36 ^-) ^ 
2 ^ 

B - Jim, - . (4.84 x lO"28       se|3       ) I. 
T0 gm cm   deg 

B' - - (0.662 x 10'36 ^ ) IL
2 

In the above list a dlmenslonless absorption constant a0 of order unity has 

been Introduced and the power I. Is In units of ergs/sec per square centimeter. 

Now, using these numerical values, one finds that the power dependent terms 
2 

are very small for power fluxes less than 10 MM/cm , except for the term which 

represents energy absorption. In other places In the dispersion relation, the 

power dependent terms are connected with the nonlinear Index, and will be 

omitted In the following. (The terms omitted are related to self-focusing In 

a manner described by Brueckner and Jornat -') This neglect of the nonlinear 

Index and of the weak dependence of the optical coefficients of gases on the 

temperature for fixed density allows the simplification of the dispersion 
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relation to: 

|[a) - iK'k2]^2 - INuk2 - u2k2] - (y-l) u^k2}1 

'[cLk+-ü)+][cLk_-wJ 

Ak^u). I.    . 

2 
[pAA , ocn.ßu  n 

(65) 

PoA .ii,2» In addition, for air at reasonable powers, the term -8- (wlic'k ) on the right 
acn ßuz 

hand side Is negligible compared to —jP— .    Introducing the variable 

•4 (66 ) 

Instead of k3, and defining 

T   = 

At^ßctlL 
(67 ) 

which corresponds to the parameter used In Ref. [4], the dispersion relation 

can be written In the form 

[(aKlK,k2)(u)2-1Na)k2-u2k2) - (Y-l)u2a)k2] = 

^v2k2 

T vs K 
1 1 (68) 

The problem at this stage Is the determination of the maximum growth 

rate of any Fourier component of a distortion of the plane wave as a function 

of the absorbed power from the bean. That Is, orte must solve the dispersion 

relation for the frequencies as a function of k, v, I. , and the characteristic 

parameters of the medium, and then find the maximum value of (- Im u) for real 

v and k with |v| < 1. Such a problem cannot be solved analytically without 
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further approximations. One region of Interest would be the high power limit, 

where the driving term would overwhelm the losses resulting from thermal con- 

duction, viscosity, and the absorption of electromagnetic energy. In that 

case, all the Imaginary terms In equation (68), with the sole exception of 

the "1" Immediately preceding T, can be dropped, reducing the dispersion 

relation to the form employed by Brueckner and Jorna In equation (45) of the 

reference [3]. 
■ 

To proceed analytically, Brueckner and Jorna'- -' neglected the second 

term In the brackets on the right hand side of (68), and assumed that the 

maximum growth rate would occur somewhere on the curve In the v, k plane 

determined by the constraint 

k) 
Along that curve, the maximum growth rate Is 

("Imw)max ai/r O-08) • ^70) 

ReL-cL/l(\;+J£--1I = 0. (69) 

which corresponds to 

v sk 'Vii ^sl VoWl (71) 

(These results differ from those In reference [4J, which are erroneous.) 

There Is no assurance that the actual maximum growth rate does lie along the 

one-dimensional subset of the v,k plane assumed in reference [4]. In reference 

[5], a search was conducted along the line 

v + J-= 0 . 

However, the result for the maximum, 

^/F (1.06). (72) 
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Is two percent smaller. No other curve In the v» k plane has been found 

which allows an analytical search. Nevertheless, one suspects that these 

answers are sufficiently close and that further analytical effort Is not 

Justified, because of the previous approximations. 

An Interesting unknown not discussed previously Is the power flux 

required to stimulate these Instabilities. This threshold power Is clearly a 

critical function of the losses In the system, which therefore renders It 

Important to treat them carefully. If the second term on the right hand side 

of equation (68) Is dropped, the Instability appears to have no threshold, 

because the conduction loss, which must be overcome, vanishes as k -•■ 0. 

However, as k * C, the Stokes and antl-Stokes terms on the right hand side of 

equation (68) tend to cancel each other, and, therefore, there Is a threshold 

power flux for these stimulated thermal Rayleigh scattering instabilities. 

This threshold was determined by computer to be 312 ergs/sec per square 

centimeter. (The computer program itself is exhibited in Appendix A of this 

report.) 

The presence of a wind does not alter the growth rates for distortions. 

This can be easily seen by considering the problem from a frame of reference 

moving with the fluid. A uniform beam remains a uniform beam in the moving 

frame, although its direction of propagation is shifted. This shift In 

direction has no effect upon the stability discussion. 

In order to attempt to examine the behavior of the beam in more detail, 

without being restricted to the linearized equations, a computer solution of 

the full set of laser-fluid equations was attempted. Certain computational 

.problems were encountered and are discussed in the next section. Then, in 

Section IV, the results of the computer calculation are discussed. 

-28- 



PART III 

STABILITY AND UTILITY ANALYSIS 

It is well known that In the solution of partial 

differential equations two problems arise« The first 

problem is that the system of difference .equations may 

not be stable against error growth. The second problem 

is that the solution of the difference equations may not 

converge to that of the differential equations. Von 

Neumann'" proposed a necessary condition for stability 

for linear partial differential equations of parabolic 

and hyperbolic types. This condition has been gener- 
19]        [10] 

allzed by Kato and others. 

In this section, a handy sufficient condition for 

stability of difference systems associated with parabolic 

and hyperbolic equations, both linear and non-linear, 

will be discussed. Consideration will be given to the 

generation of errors in computer solutions and a new 

criterion for the utility of numerical integration 

schemes for complicated systems of equations will be 

proposed. The new term "utility" is introduced to 

distinguish the criterion from the better known 

criterion of "stability". Some simple applications of 

this criterion will be examined in this chapter, as a 
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prelude to its use in the more complicated laser-fluid 

problem. 

The concept of "utility" is basically very aimple. 

A differencing scheme is "useful" if the solution« of 

the difference equations are sufficiently accurate 

approximations to the solutions of the partial differen- 

tial equations over the domain of interest, Sucli an 

integration technique may not be stable, according to 

the usual definition of "stability" and, thus, may not 

be convergent either. This lack of stability and 

convergence does not cause alarm, because the accuracy 

can be estimated. The best analo/scy would be an 

asymptotic series expansion for a function. Such an 

expansion may not converge to the function, yet can 

still be a highly satisfactory description of the 

function over the domain of interest» 
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A. The Stability Criteria 

The most general form for a multi-level difference 

scheme is 

^%*%fcL|H -I- * tüHt+k**® (73) 

where /fy,^-i, /I» are finite-difference operators which 

are functions of time in general. The time is designated 

by n and uT« is the dependent variable of the difference 

equation. The actual solutions, Urt sssU(n/>;(-) t  for the 

associated system of differential equations will not be 

the same as UJn because of truncation errors h»  introduced 

at each step of the calculation. 

An equation of the form shown in (73) results from 

converting any system of partial differential equations 

into a system of difference equations. The vector IA/,, 

is a vector with many components representing the values 

of each of the dependent variables at each of the 

spatial mesh points. In addition, some of the components 

of U)n  can be taken to represent temporal derivatives 

of the dependent variables if the equation is of 

second or higher order in time. 

Assuming that ( 73), when supplemented by suitable 

boundary and initial condition has a unique solution, 

one may write 
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^♦| •* ^.l t4t|-i> - +ß^M+JM   , (74) 

whore 

The solution of the system of differential equa- 

tions, evaluated at the time nAt » will be denoted by 

^n , and the value of the solutions of the difference 

equations generated by the computer by U/J • The differ- 

ence between these values will be called the error and 

will be denoted by 6* • In general W« T^VIH because of 

round off errors. 

If en  is sufficiently small then it will satisfy 

a linear system of difference equations, 

e"*J ^ ^-r ^g-, + + C,<?*-K** .        (75) 

(xn  represents the local errors introduced at each step 

and is the sum of truncation errors and round off errors. 

For linear equations, Cj ■»ft and ^ will be independent 

of M if the time does not enter explicitly into the 

linear equation. However, if the basic system of 

equations is non-linear, then cu*) =£ b-A*) • 

The vectors <?„, eMli , e,,^., as well as 

M* t WM<., jA^-jwcan be arranged so that the com- 

-32- 



ponents form new vectors, EM and W„ , with ft times as 

many components 

and W» $ 
I 

\J*     j 

(76) 

Then equations ( T1») and (75) can be rewritten in 

form 

where 

K 
6M HS ßC^/^) S=2 

»  ß^1<»') 

X 

1 

o 

o 

I 

ß.w 
« 

0 0 

0 
1 

1 
' 1 

0 
1      ! 

C« ■" CC«,^)« 

Ce-.(M) V^ ^ ^ 
1        0     --■-   o     o 

I 
0 I 

1 1 
1 1 
1 \ 
1 1 

I o 

-- 0 

-- I 
1 
0 

the 

(77) 

(78) 

(79) 

(80) 
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and 

/fr, 
«v  jo. 
4 - | I (81) 

The matrices, I, appearing in (79) and (80) are 

Identity operators for the subspaces over which the 

difference operators Pi and C- operate. 

For homogeneous difference equations with time 

independent coefficients, the index Y\  on D„can be dropped 

and equation (77) becomes 

Wn», *=   BWn (82) 

where  d *& oC^t)   •    Kantorovdtch*-   -Qef ined a system of 

linear homogeneous difference equations with time 

independent coefficients to be "stable" if, for specified 

T, there exists a positive number t: such that   L BC<wJ 

is uniformly bounded for all &£ such that   o mt ^ T 

and for all integers n such that  o^»^k<T , 

A straightforward generalization for the case 

where   B   is also a function of the time index YI would 

bo the following. 

Definition;    A system of difference equations is colled 

stable if, for specified T, there exists a positive 

number T  such that the set of operator products 

ÜSf*,**-;^"-',**) SH<*# is uniformly bounded for all 
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A ^ such that o <&* < t  and for all Integers vt such 

that o<h<ii<:T • 

In case the spatial coordinates do not enter 

explicitly, tta. analyst of the system can be simplified 

by a Fourier transform technique* In such cases equation 

(82) will lead to an equation of the form 

^ß$^%i&M^*V4) (83) 

where ü}/-Ä) is the spatial Fourier transform of W^« 

The matrix 6{(.**,A)  is called the amplification matrix. 

An equivalent statement of the Kantorowltch stability 

criterion is that for spscified T, there exists a posl- 

tive numoer c sucn that the sot or operators Q C^/O 

is uniformly bounded for all values of -h  and for all At 

such that 0 <4i:tt and for all Integers n such that 

The value of the Kantorowltch stability criterion 

lies in the proof by P.D. Lax *  that in the limit 

that 4t  tends to zero, all systems which are stable lead 

to solutions which converge to those of the associated 

differential equations and vico versa. To proceed it is 

useful to Introduce some standard terms: 

(1) The Lp norm of a column vector yj t  denoted by | y L 

is defined by Mp^L^fj- 

(2) The maximum norm or the L^ norm of a column vector. 
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^ •, denoted by l^ls defined by (^«^Ji^J  ( 

(3) The Induced matrix norm of a matrix % , denoted by 

«*'lp or Ifcfi is defined by MH«*"^^  . 

(4) The radius of a matrix ^ , denoted by RiX),  is 

defined by RiVss Hf*(2.\ ^1.) *• l|*lU. 

The radius of a product of matrices is not greater 

than the product of the radii of the matrices, 

(5) The spectral radius of a matrix ^ » denoted by 

fCJO , is defined by f(V =***(**&:], 

whore  IX; (" x» 1,2, ■',**)   arc the eigenvalues of 

*£ . Clearly, it is true that fCfc^fW«/!^. 

If X. is a normal matrix (commutes with its 

hermitoan adjoint), then it can easily be shown 

that 

With the aid of these terms, the Von Noumunn 

necessary condition for stability can be stated in the 

following way, A necessary condition for stability is 

that there exists positive numbers 'V and D  such that 

the spectral radius f(6r) of the amplification matrix 

4 (a*, A)    satisfies fC^) ^ I + P^ for all A  and all 

Ajt such that OidArt't ,    If drfciv^) Is a normal 

matrix (commutes with its hermitian conjugate), then the 

Von Noumonn condition Is sufficient as '.;cll as nGcescary, 
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Many sufficient conditions for stability have been 
1*0,12] 

proposed.     The analysis for stability has been 

generalized to the case in which the coefficients of the 

differential equations are time dependent by P.D. LaJr0'13J 

and many otherst10-" It was further generalized by W.G. 

Strang °J And many otherff" to the case in which the 

fundamental system of equations is non-linear. These 

extensions will not be detailed here. Instead a handy 

sufficient condition for stability will be considered. 

Theorem; A sufficient condition for stability is that, 

for specified T, there exist positive numbers rand D 

such that 

g £ l-f D-a* (84 ) 

for allA*- such that o^^t< L  , where 

for ail positive integers n c T/af*    For a linear 

equation with time independent coefficients, 

Proof; For  R ^ i + D^t , it follows that RM ^ ^ 

where K  »fipT e Therefore, 

\\oe> 
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for all At and n  such that Otektt    and 04Y\ak< T 

so that the maximum norm Is uniformly bounded. Since 

the maximum norm Is uniformly bounded, then the matrix 

product Is uniformly bounded. Thus the stability 

definition given above Is satisfied, Q,B,D. 

A matrix fc  is called a dominant diagonal matrix 

if the "interior radius", R-,n (V) > 0    , where 

Lemma; For a two level implicit scheme /UwtOt/^,» hjf, , 

a sufficient condition for stability for speeified T 

is that there exist positive numbers t and p such that 

0 t-Jr-   £   I + CM* . C 87 ) 

for all ^ such that 0 *■*>£ < T  and for all Integers 

Ki such that ö t "4* < T » v;here 

S^ S »Tim |?J«(^ffli7f 
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Proof; Since f?iV. f/K*»)) > 0 for all a such that o^n^T , 

it is true that /T'^« ß ^ I + E + BN-E^-•-- )  whore 

4 1-%*  f»**iN. 

It follows that 

} ^ 2  

«» 

 ;, 

Therefore, since (-^r) = Ci+p^) < K     where    ^==^ 

it follows that 

IIA'VoA-'a)'--^-;^)/! 

-«• RM'Vo^Vo----A''c^«)/fVr«)) 

^J 1_ _Jl 1_ 
in In 
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Thus a uniform bound Is obtained and tho stability- 

definition is satisfied. Q.E.D. 

The above lemma offers a sufficient condition for 

stability of an implicit difference scheme. It is 

conceivable, of course, that some stable implicit differ- 

ence schemes might not satisfy the criterion given in 

this lemma. More generous sufficient conditions can be 

given, but none is as easy to apply as this one. 

As a practical note, it might be remarked that, 

for actual computation, one is often interoated in using 

the largest value of Ajlr consistent with the stability 

requirements for a given mesh size.   This is certainly 

the situation in the computer solution of the laser-fluid 

equations attempted in Part IV   of this study. In 

such cases the relation of V  to the spatial mesh size 

is of great interest. The spatial intervals are often 

dictated by the scale of the initial configuration. 

For example, if the dependent variable at t-O is/^znx 

then it is unlikely that values of AX larger then 0.3 

would be useful from the standpoint of convergence 

requirements. The connection between tr and the spatial 

mesh size can be illustrated with the diffusion equation 

^-Ä^*^ (88) 
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where the term ^-M, Is iruluded to allow some exponential 

growth in the section. The simplest explicit difference 

scheme representing (88) is 

*t i~fal^-*K**UfH'    <89) 

where KI is the time index and 9 is the spatial step 

index» This difference equation can be put in the form 

Using, for simplicity, the handy sufficient 

criterion given by the theorem above, one would use (90) 

to evctluaue K • Slnoö ühe time cloe« not enter explicit- 

ly, R — £- • It is trivial to compute £ directly from 

(90) without writing down the matrix 8 explicitly. 

Doing so, one finds 

Since K , Aj: ,  andC^X) are all positive, this expression 

simplifies immediately to 

R-h-^N *^l+>^. (9i) 

The stability condition now enters through the argument 

necessary to remove the magnitude bars in (91 ).  One 

must be careful to realise that the D in the stability 
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theorem: 7? ^ I +P^fmust not be a function of ^X . All 

of stability analysis is couched in a framework in v/hich 

AX is supposed to be allowed to go to zero in soaie 

manner. The D of the theorem must not be affected by 

AX-*0 , In other words, one is not allowed to consider 

■ 2.^fc to be of order bk   as it would be for fixed ^X , 

The theorem does not intend AX to be fixed. Thus the 

removal of the magnitude bars in (91 ) requires further 

analysis. The term -but  may, of course, be considered 

to be of order &jz  bocause -£■ is indeed fixed, independent 

of ^^ , If it is true that 

W- (92) 

then ( 91) becomes 

and ^ plays the role of V   in the theorem and the scheme 

is stable. The stability condition Is (92) , so that 

^ ^-27I* ^ ^ • (94) 

Thus f has been discoverecl and related to &X , There 

is one other possibility for removin«; the magnitude 

bars in (91 ).   If -7^ > 1   » then (91 ) becomes 
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so that the scheme falls to meet the sufficient con- 

dltlon given In the theorem. 

The points to be emphasized In the example above 

are the following. The quantity D appearing In the 

stability theorems must not depend on the spatial mesh 

sizes. The usefulness of the sufficient condition 

arises through the relation derived connecting t  with 

the spatial mesh sizes. This relationship typically 

arises by requiring the part of R that is not of order 

A;t to be less than or equal to one. Furthermore, a 

term containing spatial mesh sizes in the denominator 

is not of order-A^T . As Indicated earlier, there are 

certainly more gencroua sufficient coimitions available 

in the literature than the one illustrated here, but 

none are as quick and easy to apply. Since, however, 

in computational work one never actually lets AX and &£ 

go to zero, it is not clear that analysis based on such 

limit notions is necessarily the best approach to 

practical problems. As a matter of fact, peculier 

paradoxes such as the one discussed on page 230 of 

Reference[10],arise from such limit notions. In hope of 

obtaining criteria of greater practical value, the 

utility viewpoint has been devised and will be presented 

next. 
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B. The Utility Criteria 

The theorems mentioned above are not practically 

ipplicable in general because, by omitting local error, 

there is no way to estimate the maximum error growth. 

Also, the increment of space variables r^*,^, ziz,.---) 

and the increment of time variable ^i: do not tend to 

zero in actual computation. Therefore, a new criterion, 

"utility" is proposed here to avoid some unnecessarily 

stringent requirements and to limit the maximum error 

growth at the same time. The notation of the proceeding 

section will be employed below. 

D^firti tio'v For given f ar^d T , and for any given 

initial and boundary conditions, a difference scheme is 

useful if there exist positive numbers V, and tt such 

that for any &k   in the interval T, ^^^t,.    , the 

absolute errors are bounded by 6: , for all integers 'Tl 

such that o t.n**t.T  , where T is the physical time of 

interest for a given problem, ^ is the increment in 
■ 

time, K is the time index, and %  and t| are to be 

determined by the round off and truncation error, 

respectively. 

Theorem; For given 6 and T , a necessary and suffi- 

cient coiJdition for utility is that there exist positive 

numbers t[  and T». such that for any/»f- in the interval 
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(95) ££ » 

for all Integers n such that o <***< J  •, where 

Proof; From the difference equation for the error, one 

gets 

It is easily seen from the definition of £, that 

Max I <?  = MAX r I .        / v 
K* I ^U    «  ^to , (97) 

for all integers n such that oznafcT    ,    Therefore, 

e    is the upper bound of the maximum absolute error 
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for any A^- in the interval 5" äO^ä tv. , The maxima 

shown in (97 ) exist because only a finite set of values 

.of n are involved for t; ?0 . Q.E.D. 

For linear equations with constant coefficients, 

c!    is independent of n. If one makes the additional 
Apt 

assumption that 6r is also independent of n, then 

equation (95)  becomes 

/vn»i ^  — T  «—I 

CO 

OS 

The local error dfn can be expressed in the form: 

?h ^ Pn + HM ^ Pn 4 ^n 
At" (99) 

wlierc R» and H« are the local round off error and 

truncation error, respectively, For a general differ- 

ence scheme, one may write Hn^h^^i   , v/here 5 is 
rei 

determined by the difference scheme,L J 

A handy sufficient condition for utility will now 

be given. The following notation is introduced for 

convenience: 
■ 

000) 

*$" 001) 
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where the maxima are computed over the finite set or 

values of n such that 0 €m*&<j.fmf  specified T , t) , 

and Tt such that t^^ir^tt   , The set of integers n 

Is finite because of the upper bound: -^- • 

Theorem; For given fe and f , a sufficient condition 

for utility is that there exist positive numbers % 

and Tt. such that 

.»♦1 
8 '  '  C p + W')^ (102) 
R - / 

for all Ai   such that  t; ^^^^^l and for all integers 

n such that  9*ns&4T , 

Proof; The quantity appearing in line ( 95) of the 

preceeding theorem is 

ni!m 

«[/ tR t^l4R,+ +%*}$ 
■—•«♦1 

R     —   I       , —       -r  .H-» 
R -  » 

(p+Ti^O 

Q.E.D. 
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For- vt ==-^p  , the LHS of (102) becomes 

-4^—_"" ' C P-f.T; ***") . tf &£  is very.large, then the 

truncation error TT <a^4  will become large and the 

error can surpass the bound. If, on the other hand, A;t 

is very small, then the round off error from p  can 

build to a large value and surpass the error bound 6- , 

There may, however, exist a region of ^^r, (t, s^^ fO , 

in which the utility condition is satisfied. Obviously, 

if Rs | , then the proof above breaks down in the last 

line and the criterion can be stated 

for all n such that o<Lr\4i£T    , This criterion would 

require that the minimum of -Jj + T^i*  be less than e/T ■ 

The condition, (103 ) would not bo useful unless one 

actually could estimate p   and J-, . This can be done 

easily only for very simple sohemos. There is, however, 

no necessity to take R=-| since, without loss of gener- 

ality, a larger value can be used in place of R • Thus 

(102) may be used in all cases, 

A very useful corollary to this theorem can be 

given, based on the precondition that || £* Ij^ can be 

written in the form 

II C«|^i + ***Jt      so that  R = / + $*ir (104 ) 
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where, unlike the case of stability criteria, ^ 

( and hence $    ). is allowed to depend on the spatial 

mesh sizes. One should notice that condition (104 ) for 

R is not the same as the stability criterion (86 ) for 

two reasons: $   , unlike D, is allowed to depend on the 

spatial mesh sizes and, furthermore, the R in  (104 ) is 

equal to ^ 11 C« 1^ only for o^M<:-^r , a finite set of 

values. 

Corollary; If precondition ( 104) is satisfied, then the 

sufficient condition (102!) becomes 

(i + l**T~l (p+t**")^. (105) 

The precondition bears further discussion. Certain- 

ly, for the difference scheme 

ef-»«^«^. cos) 
it is true that j) C^l^-Z+S|g* ,. so that the precondition 

(100) is not satisfied. In such a situation, the suf- 

ficient condition (105 ) could not be applied and one 

would have to use (102),  Equation (106) represents an 

unusual situation, however. For difference equations 

resulting from differential equations written in a 

form where only first derivatives with respect to time 

arise, then one can have the explicit scheme: 
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where ö?n is a matrix operating on the components of £
M , 

Notice that in this canonical situation an unusual factor 

like the 2 in (106 ) does not enter. 

It happens that in very many difference schemes, 

the precondition (104) is automatically satisfied. • 

There are cases, however, for which (104 ) imposes a 

real condition. For example, the diffusion equation 

(88) leads to (91 ): 

Thus li tuf^ can be put in the form / + %*$t  as shown 

in ( 93) with J—^,  only at the price of accepting 

the condition 

•zltoL ± I (108) 

which happens to be the stability condition (92).  Thus, 

in this example, one gets the stability Condition as a 

precondition for the utility condition; 

ü±|^l-L ( p .,. t*^* ) 61-r ( 109) 

and furthermore ^   is independent of mesh siae in this 

case.  Both (108) and (109) must bo satisfied in order 
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to appeal .to the sufficiency condition ( 105) for utility. 

Instead, one can, of course, use the simple condition 

(102) If 4«*0 in (88) , then one still gets the 

stability criterion as a precondition and one can use 

(103) for the utility criterion as already discussed. 

There is a third option available, if one wishes 

to use neither (102) nor the combination (104)-(105). 

One can decide to accept a slightly more restrictive, 

condition. Per example, from (91) one c^n write 

i?^ +[-g&-+f]^^ :*+^      (no) 

and use S^t in (105) to get the rather strong condition 

for utility 

0*y*r-3 ty^Wf^ _ (111 , 

The Schrödinger equation is similar to the 

diffusion equation (88), except that the factor, if 

multiplies ä.  on the left hand side of the equation. 

This innocuous looking factor of i has the crucial 

effect that no explicit difference scheme for the 
[15] 

Schrödinger equation can be stable:   This can easily 

be seen by computing R . This time there is no 

stability condition such as (92) and, correspondingly, 

the precondition Cl04i is, more or less, automatically 
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satisfied and (105) gives a utility criterion which, 

unlike (109), involves the spatial mesh sizes. The 

Schrodlnger equation and  other examples will be analyzed 

in detail at the end of this section to further illus- 

trate the application of the utility criterion. 

The practical value of criterion (105) or (111 ) 

lies in the fact that large values of n will often be 

used, say K £ A/s3zy*'00. It is then useful to rewrite 

(105) in the form 

y>*\ 
(l + S^t) £( + (?**)   |r—^( &&>-—&   ,    (112) 

where it is presumed that the error bound 6?  is 

generous enough corrspared to the error?? in cny single 

step that the 1 will be insignificant and can be dropped. 

Taking logarithms, one then obtains the critic«! condi- 

tion 

^^•f fr^lirl. (113) 

where, again, it is presumed that the error bound is 

generous enough that a term can be dropped on the HHS, 

It is also presumed that A/»| so that /V+l f^ls/   . Thus 

the useful form of ( 105) under these conditions is 

'i^^^-^'llr^rh^']. (U4) 
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Now attention Is called to the fact that it does not 

matter very much what one uses in (114) for the ratio, 
6- i 

F * l6t,H *  1:)ecause only N   
times the logarithm 

of th:s ratio enters. For example, if 

»Zoo       and   h/=.ioo. 

where A/ is the number of steps to be used, then 

Then, using a table of natural logarithms, one finds: 

**"-ITr- (115) 

If, on the other hand, a coneiderably more generous 

bound is used, say, 

*io        for   h!=:ioo. 

• then 

4 

so that the condition is 

Thus changing the error bound, 6- , by a factor of 1020 

only relaxes the criterion for At by a factor of 14, 

Thus one might expect to try to use the rough criterion 
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***%¥       with to^10 > (116) 

for almost any system of equations. If (116) leads to 

instabilities in the computer solution, then one might 

increase %  to, say, 'K) and try again. If, on the 

other hand (116) leads to stable solutions, but is too 

restrictive, then one might decrease 4 to, say, 1 and try 

again to get stable solutions.  Following this course, 

P and k  would have to be estimated only if one wished 

to know the value of the error bound 6- corresponding to 

(1'6).  One must, of course, bs able to distinguish 

botweeil   iiicii/iionictoiC/"!   iiiöööiuj.li üit-'ö   ciuu   i.l'UtJ   phy.'jj Cftil 

instabilities (such as the e   5n (88) )which may arise 

in the computer output. With some exporience one is 

able to spot earmarks of some of the mathematical 
[10] 

instabilities quite easily. 

For implicit two level schemes, it is easier to 

use the slightly different criterion given in the 

following lemma. 

Lemma; For a two level implicit scheme A^^^E^,, a 

sufficient condition for utility is 

\JA    - 7 

m -1 
(117) 
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for all integers n such that O-znairt T , where 

/?^^)«Bmm/^|-M^£J^j (n7a) 

and 

Ri„^*jrRiJfi<< (117b) 

In some ways the utility criterion is similar to 

the "practical stability condition" discussed in 

Reference P-v but the philosophy is drastically different 

due to the fact that the utility criterion makes no 

attempt to deal overtly with questions of stability. 

It should also be mentioned that the utility criterion 

is easy to apply, even to the complicated set of 

equations describing the laser-fluid system. The 

"practical stability criterion" and other common 

stability criteria are extremely difficult to apply. 

Partly the difference in the ease of application 

of.the various tests arises from the fact that stability 

and bounded error growth (utility) really are slightly 

different concepts. In large part, hovrever, the dif- 

ferences arise because some of the stability methods 

are made very complicated in order to weaken the con- 

dition on <»/• as much as possible. In this regard it is 

quickly admitted that more complicated utility tests 

4can easily be davised, but such matters will not be 
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considered here. It is a part of the utility philosophy 

that utility criteria should be less complicated than 

the equations one wishes to solve in the first place. 

In this way it is hoped that the major part of the 

computer time can be spent solvinR the equations of 

interest, rather than trying to unravel stability or 

utility criteria. Stable or unstable, convergent or 

divergent, if the computer solution correctly describes 

the phenomena for which the differential equations were 

written, then that is utility at its finest. 
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C. Examples of Utility Analysis 

In order to Illustrate the application of the 

utility criterion, several examples will now be given. 

The criterion will be applied to the Schrödinger equa- 

tion, the Dirac equation, and a nonlinear partial dif- 

ferential equation similar to the laser self-focusing 

equation. In each case, three different iteration 

schemes are considered: a two l^vel explicit differ- 

ence scheme, a two level Implicit difference scheme, and 

a simple multi-level "Leap-Frog" scheme. The method of 

finite differences is not necessarily the best means of 

solving these particular differential equations, nor 

are the selected difference schemes necessarily the 

best. These examples are presented chiefly to illustrate 

the application of utility criteria. For simplicity, it 

is assumed in these examples that C » Afl  and r ~ 1° 

Certain transformations are introduced in the 

examples in order to reduce truncation errors. This 

technique is a standard numerical procedure and is often 

called the "integral method." The Schrödinger equation, 

for example, may be put in the form: 

= ^  (^ V ^f (- ä   Cvdi')      (1,8) 
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Integrating, now, from ^«  to ^H-M , one obtains: 

•♦■♦I 

= ^Pf-^f^J+^/^^Vj^p^l^/^      (119) 
f 

Taking if ES q: &%p ( JL ( v^X') and making 

the approximation that 

one can proceed to obtain difference equations for the 

better dependent variable,    ^p    .    The integral method is 

incorporated into the examples bclcv; for the SchrÖdlnger 

equation. 

1.  Schrocdinqrer Equation 

i.e. 

Let 

^H-Hf (,20) 

«^--|^V+^. ('21) 

i^ — ipaxpf^ f v<l^) (122) 
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so that 

*$"*»?(-&£**%*£ rtfetpC^frdt))] (123) 

(a). Two level explicit difference scheme (forward time 

differences) 

Since this is a linear equation, the error satisfies 

the relation: 
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+ PM +^ 
(i25) 

For n;lven fe and T , the necessary and sufficient con- 

dition for utility, involving matrix multiplication of 

the CM , can be determined by usin;; a computer. However, 

the sufficient condition (105 ) for utility of &£ for 

fixed M »foo where T= ^Xr^/oc&tcan ^ obtained very 

easily as follows: 

«en-1 + rot = 11 + ^.^(g^+^-^j 

+ 1^1^(5^ + 1^+ -^?I 

=*■ J=^[T^^'-^]        (126) 

(HI —(hl-t 

so that 5=0, 

If the initial condition of «f and the potential v/ are 

* smooth functions of x,y,zt for a reasonable time interval 
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T of physical interest, then the local truncation error 

may be assumed to be about the same order as that of the 

round off error. The sufficient condition for utility 

is simply 

At &   ,-222  (128) 

Actually, there is an upper limit for T depending on 

the smoothness of V as well as on the boundary and on 

the initial condition of i^ , 

(2), Two level implicit difference scheme (backward time 

differences) 

Prom (123) 

^#{iC«p^K,<-*i«'*) 

+%^e^-k\ < ^«- vdi) 'z ^r«^ 

= f... (129) 
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The error satisfies the equation 

+ ^ ^p^ ^ nv.i«. - v) ^J -iE;;«]»}4t 

(130) 

To apply   ( 117),  one computes: 

^i-^r^^^i^-4-^. (131) 

For A/«-^ = /oo,  the sufficient condition for utility 

is 

in 
A* ~    ^/-L-^-i-^^> (132) 
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(3). A simple multilevel difference scheme (Leap-Proß 

Scheme) 

(133 ) 
Since %-l for three levels, ?" has a very simple form 

namely 

(Cx o) (134) 

Therefore, 

^^^^^^(^Tv^^).        (m) 

Again, for A/=»^ s'00» the sufficient condition for 

utility is 

^^ 

•^ä^J^iSO* Cl36) 
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2. Dirac Equation 

(^-fA-wc;tf««(?, (137) 

For the explicit repreyentation 

' I    O 

.0        -/J 

r- 

r- 

^« '.2.3 
(138^ 

(138Ö 

inhere 

-(r:), ^G":), -c:). 
the equation has the form 

^cA')] 
o 

W Ht 

EÄ^A'J 

+iiA')3  ^^♦t/eg 

+4IA-}J 

0 

t 

^ 

(139) 
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Let 

Then 

^*§4**%*m$ %}~o (140a) 

+ ^Ä + 4f/11)Jft-.^+i|/»,J^}-=Ö (140b) 

*ß*^h<& + il(4%}~*0 (140c) 

^^^t^jj^-^^^^-^ . ^0d) 

(a). Two level explicit difference scheme (forward time 

differences) 

1    z*K"M)+nfi%m))h* ('«i» 
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lvc     2ÄX3        + Ir« "^u J 

(141Ö 

(141c) 

+ ; f JJüiä&Lljkii^ 4 Je.A"(T     ) 

(141d) 
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AX* ^  ,e jt  .   . : r-. . (U2) 

Following.the same procedure as for the Schroedinger 

equation, one can show that for V»^«/^, the sufficient 

condition ( m ) for utility is 

Naturally, there is an upper limit for / as there was 

for the Schrodinger equation. 

(b). Two level implicit difference scheme (backward time 

differences) 

-;( ^'^'^'•'«^^'Cj^K-C^   ('43a) 

-f V^.o->^-. , #A'^4))K-ff,J4)  (143b) 
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.Hfl .»«M 

-.(faz^.^vCj«;]^1-^;^»    (143d 

\  z^5 ^  AC « Viuw) 

Following the same procedure as for the Schrodlnger 

equation»one pets 

I 2 
~eT 

Therefore, the suffy     jnt condition for utility Kith 

(144) 

N-£,~loo is 

M  *= 
ftälW^^Jvl' 

(145) 
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(c). A simple multilevel difference scheme (Leap-Frog 

scheme) 

\ Z4X' *   HC" %(*}*•>) 

~A ( JäteAi Z. %ilbil + il A» if" .    )]2AK' (146a) 
2 AX4 hCh MdiwJ 

\ 2 AX' UC"   WjH) / 

*' " '«;<«""    "" —r 

1 
\       2^x1 ^TTc-fi^H)) 

-A( ^^;5^A) ^A^Cj JN^ C146C) 

C146d) 
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Then 

R - * * * C£ fjA'l* &*lk*lt$< (147) 

so that the sufficient condition for utility with 

3, Non-Linear Solf-Focnsinp: Equation 

Let ^-M.+iA, | so that 

:^ + #^#^faV^)/i.-0 (150a) 

li^l^-^-^-MN^M,-^. (150b) 

(a). Two level explicit scheme (forward time differences) 
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The error.satisfies the approximate relation: 

fr'Lr1^* W+3 'KtMlv 

+ z^r{Aui) §**&** * %cii) + ^4) (152a) 

CV- C,, +{- %^^^ g^>+
(^r2£^ 

+ 

+M;Xä>^ ^ + H;^ ( (152b) 

This yields 
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■ 

where 
■ 

For A/- ■s5:,s='00 , the sufficient condition is 

for all  M» i, z, ••• ./v/. 

(b). Two level implicit scheme (backward time 

differences) 

+ _i_. filStucÄuj V r A **, f+(#"'. fl/CÜ 1^*- 

«A" 
^4> (155a) 

5=8 ^W.i). (155b) 

Following the same procedure as in the first two 

examples, 
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For /V—2Sss/00 i t^6 sufficient condition is 

•  "** *1**&>U>M ■ . (,57, 

(c). A simple multilevel difference scheme (Leap-Frog 

scheme) 

^CM^}^ r^OA,:^ J^ (158aj 

(ar)1    r MV V  Tür   / 

+ f^#^ (C/JAr/i)}^ . 058b) 

This yields 

* * i^I^ + ^ + 2^>^M ~ l + U* , ( 159) 

Therefore!, the sufficient condition for utility of ^A- 

with Ms*3^~(0o  is 

^ ^ -rn s? -. ' ( 160) 

for all w = C i, . ^. 

Another example, the laser-fluid system of equations 

•«considered in thin study, wil.l be ßiven Sn the next 
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section.  It Is similar to, but actually simpler than, 

the self-focusing example Just considered. 

•74. 



PART IV 

COMPUTER SOLUTION OF THE LASER-FLUID EQUATIONS 

In this section a computer solution of the full set of laser-fluid 

equations Is presented. The two major difficulties In using numerical tech- 

niques to solve differential equations by computer are error growth and 

excessive computation time. In order to coptrol the error growth, the 

utility criterion discussed In the preceding section has been used. Further- 

more, highly accurate seven-point difference quotient representations of the 

differential operators were employed to reduce truncation error. A procedure 

for obtaining such representations Is given In Appendix II. In order to 

handle the economic problem of large computation time, a certain amount of 

efficiency Is Introduced by minimizing the amount of core storage required 

of the computer. This was accomplished In part by using overlaying techniques 

to store several pieces of Information at the same site In the computer. Thus 

Information Is stored only as long as It Is needed and then Is replaced with 

current material. The computation time was also minimized by making use of 

a nonunlform grid. The seven-point difference relations allowed a relatively 

large grid size without undue truncation error and the nonunlform grid 

permitted a greater grid density in the region of special interest. Thus an 

accurate solution could be obtained with a minimum of computation. 

The laser-fluid equations were solved in the near field region of a 

laser pulse, initially gaussian in both r and z, propagating through air at 

1 atm of pressure and at 10oC. A cylindrical geometry was used and cylindrical 

symmetry (no dependence On the angle 4>) was preserved at the price of dropping 

the gravity term in the Navler-Stokes equation. Having cylindrical symmetry 

amounts to a considerable simplification in the problem, so that the inclusion 
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of the free convection effects due to gravity was not attempted In this 

analysis. The problem described above amounts to a mixed Initial-boundary 

problem. The Initial configurations of the laser beam and the fluid are 

specified subject to certain boundary conditions at r = o which must be 

satisfied at all times. Furthermore, the boundary condition at z - 0 Is time- 

dependent, because the tall of the gausslan must be fed Into the spatial 

region. For the numerical solution, a spatial mesh of grid points or stations 

Is 'Jsed to represent the rz-plane. At a given Instant In time, the values of 

the various dependent variables are obtained at all of the stations. The 

difference equations are then employed with these values of the dependent 

variables to advance a step In time. This procedure Is repeated over and 

over until the desired time Interval has been traversed. An explicit difference 

scheme was used In this calculation, because such schemes are simplest to handle. 

The laser-fluid equations are given In equations (25a)-(29) In Part I. 

As mentioned above, the gravity term was dropped. Also, the t'iermal conduc- 

tivity, K, was taken to be constant because Its derivatives are very small. 

The equation of state was taken to be the Ideal gas law. The numerical values 

used for the various parameters are the same as those given for the linearized 

analysis in Part 11, because the same temperature and pressure were used for 

the undisturbed medium. The laser frequency u and the dimension!ess absorption 
14  -1 

constant a0 were chosen to be 1.773 x 10 sec  and 10, respectively. The 

wave equation, (25a), for linearly polarized light In an absorptive medium Is 

taken to be 

2 
c2V2E = -^ (eE) + ac^ (^e E). ( 161 ) 

This equation Is an approximate equation describing an electric field which Is 

polarized linearly. Strictly speaking, of course. Maxwell's equations do not 
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allow cyllndrlcally symmetric, linearly polarized beam. 

The solution of (161 ) Is taken to be In the form 

, lUt- kLz)   -f z 
E =|(E1 + 1E2) e   ^        L     e   Z     + c.c.    . (162 ) 

where E^ and Ep are slowly varying functions of     and t and the laser frequency 

and wave number are related by 

2      2 
eo^L s c kL ' (162a) 

where eoe Is defined In (30f).    Substituting (162 ) Into del  ) and dropping 

the second derivatives of E1 and Ep with respect to time, one can put the wave 

equation In the form 

^.ii^^v^-H^] H"     ~ tot M    ' 2(0. e V fc2 

1 
2wLe d?W   2   wLe  \^W 

3E2     c2!^ 32E2 _ 

3E2_     c'kL3E2       c2 

"L     3z2 

^--^rär-^T^i^S1^-1)^^ 

4^-eo)El-F|lfE2 + 

+j_rd2
e/3£YE  fV.^iofi Li^l 

2uLe Ld7 VV    } " "i6   V ^ 3t 3z   "   ^L   ^/J 

) 

(163  ) 

(164   ) 
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Introducing, now, cylindrical coordinates and using cylindrical symmetry 

and the other simplifications mentioned above, one obtains the laser-fluid 

equations in the following form: 

M . . ¥   3£ . v    3£ . p/Ül + In + Üz\ (      j 3t        vr 3r     vz 3z     pt 3r       r     3z y V165; 

^1 Vr 3r    vz 3zi (166) 

ÜrB ./    Ür + V   Ür + R3l\ 
3t I r 3r      vz 3z      M 3r y 

+ i[«,(Eil?1 + EiWi)+i(EitEl>'"lt]«'al 

ii?*'^"?*!?;"'^ tl67) .r 
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(168) 

9t ^ 
3v 3v 

Vr3F+Vz3r + M 3z/ 

4 

/D2V
2 + 1 3vz + 

32v
Z\    R T to 

2+E2) e' + ^ (Ef + E2) e az  ' 
-az 

(169) 

If,       c2   T 3E, 32E2     !  3E       32E2             e0 - e 
+ —5- + "T fr'6 + —5- + a  

sr2   r3r   3?^    ^(^:+^) 
^Z.a2 

3i- + TE2 

ac tK*^   !      2^   3tE2j + 2r 

.2 

^-eo)E2-Fe,|fEl 

Zl, rydr 

(170) 

f* . .-elf, k   !k+ 32E1 + 1 äEl + 
32E1 + ,      E.-£        8El|a

Z J 

. ac "  eo ~ e F   . _!__ c. M c 1    UL 

2aie  [e  ^3t;   El     ^   [**   K^      \1ZI 

2..   .2r 

(171) 
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where the notations 

e    = de 
dp 

have been employed and 

)      e"» d2e 

dJp 
(172a) 

£ = eL + ^ e2 (E^ + E^) (172b) 

The easiest way to obtain a variable grid size Is to Introduce a trans- 

formation to a new Independent variable. Thus, In order to have more grid 

points In the region of special Interest, «mall r, the nonlinear transformation 

r_ 
r. l^-x (173 ) 

can be employed.   The scale value, r0, can be chosen later according to the 

dictates of convenience.   After this transformation, equations (165) - (171) 

become, for x / 0: 

3ßsJ'piriizxi2Ür + jIxv +!V|+iLxi!v ^+v W     (174) 
3t   I L ro   3x r0x 

vr  3z J   r0 
vr ax vz 32j   Kwq} 

0 0 

0 0 

V 

+ 2llir(1-x)3v   Ü!ll + iixv   Üz. 
Cv   [ r Z x V ax      r0x Yr az 
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^ ^ (Ef + E|) e-j 

.ted!, ii+v iii 
7 

|£ + ILX]!V   |£+v   |£ 
dt r 3x     ¥z 32 

J 

(175) 

aV 
32' 

3t    -p^—9- + ^Hi-Mt; 
M^W^^O-^^-^ r-n-T —7^ v.-«, I-- - -^ vr r0-     3x rox ro   x ]! 

ro    i1 L    V1 3x       2 ^7   T (!      2) ^ 

V^ ax+ v 3x yj   v2 sr 

-a2 

(176) 

Ü3 
3t 3x3z     r0x 

ÜL t 
92'z\ 

2vz     (1-x)3 , 8v.     ^,\l 

i rv 3Ei    äE>\ + ? (E? * E|) (-«• + ^ |^)]( 
-az 

(177) 
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3t   " e \2i^_ 

3E 

ro       3x        ro   x 3z 

1 e«"e 

2kL3r + o 
»^e (/c~+Je) 

3E2     a2 

3r + TE2 

S^ '" ^st) 
2     u. 

2w, 
2e' ^--^ 

c2!^ 32E2 

3t 3Z a), L    3z 

+ ! 

e -e ~ 
e   3t t2 a = E, =— e' ^E e   3t "^ ■} (178) 

3t H c2 A 32E 

_ 2   7T^      '  ST!    l        ' 3x       71^     ^^L 3Z >\     3x        fÄ   x o o 

e -e 3E,        2 
+ a—2 äT + T-E! 

^e (^+v£) 3Z        4     1 

3E,      3£E 

3z 

Sü^ e \3t/ Z       ö 

3E, 

^^/^ 
"f (e«-e) 

2e'  3p 3E1      ckl*h 
3t 3Z ^   ^T 

+ f 
£ -e 

a El " 7~^ £    3t El i/eJ-Se    '      Zu^Sc 3t ^f e- T^E (179) 

Because of the symmetry of the problem and the regularity of the 

differential equations, the following boundary conditions must be satisfied 

at x = 0: 

and 

3E,      3E,      aT      «_      3V_      3vri      3V 

3x       3x       3x     3x     3x       3z       ^2        r 

2 
3 V,, 3vw 
-V1« 2 —^ 
3xZ 3x 

(180 ) 
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Equations (174)-(179) are not useful at x = 0 because Indeterminate ratios 

such as vr/x appear In these equations.   Applying equations (180 ) and using 

L'Hopltal's rule to evaluate the Indeterminate ratios, one obtains the 

following equations for use at x = 0: 

3t       i0^r0 3x       32/+ vz 32 

2   3fT + A\+ W 
■y axz   3?/    cv 

2 

7 

v 
T^3x /      r0 3x   3z     " "VY-U ^t * v2 32y 7 

+ i-^(E? + E2)e-).v2|I 

(181) 

(182) 

3V 

ST   "0 (183) 

3V2 

^ (E? + E|) 

■3E 

ir 1 -ij c 3E, 
2al 

2   32E2 . 32E2     , ,   at1 +      eo-e 

Lr0
Z 3XZ       3ZZ L 3Z ^ (^f^") 

3E, 

Z 
x a     C ^e ^y +T Tveo (ert-e) E2 + 

(184) 
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A 
2üife 

2e . 3fiÜ2.1kL 3 E2i 
3t dz   ' u. 

+ 1 
Vei 

L      3Z • 

E. - -S^ .' H Ej a t,  e    3t tl| (185) 

dE 

at" 
2ai).^l 

e       2^ 

3E ,   32E1      3^, 3E9 e -e 

^3?"     3?^ L az ^(^■-^)3Z 
1 

4.   a      C + TE1 

c2lc, i 

2ufe 

1    e.. /ifif + 1 Sö[ e  \dtj     T T (Ve) 

2..    .2, 
2e. igZi.^i^i 3E,     c^k.  at 

94 " fl       32 

+ f 
eo-e 

t0 £     H K1 

•^+^'   *     2uL*^' 
e   3t hi (186) 

Equations (174)-(186) are the basic equations to be used for the solution 

of laser-fluid problems In the near field region when cylindrical symmetry 

pertains.   These equations must, of course, be converted to difference equations 

before the computer solution can be attempted.   The difference equations will 

not be presented here, because they are Included In the computer program shown 

In Appendix C.   The Interested reader will be able to locate the difference 

equations In the program listing.   As Indicated earlier, seven-point difference 

quotients were used to represent the differential operators appearing In (174)- 

(186).   These difference quotients and a method for deriving them are shown In 

Appendix B.    These expressions will be used In the consideration of the 

utility criterion for the laser-fluid system of equations. 
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Once equations (174)-(186) have been obtained, It Is vital that the 

utility criterion or some other criterion be applied to determine useful 

time step sizes and corresponding grid spaclngs. In spite of the complexity 

of these equations, the utility criterion Is extremely easy to obtain. This 

Is one of the attractive features of the utility approach. To Illustrate the 

ease of application of the handy sufficiency tests for utility described In 

Part III, the derivation of the utility criterion for the laser-fluid system 

will now be given. In the Interest of brevity and to emphasize the simplicity 

of the derivation. It will be presumed that the reader Is well acquainted with 

the discussion of the utility method given In Part III and with the examples 

presented there. 

An examination of equations (174)-(186) reveals that It Is sufficient 

to consider either (178) or (179) and Ignore all the other equations. These 

two equations dominate the utility criterion and either (178) or (179) can be 

used, because either choice produces the same condition. Choosing, then, to 

deal with (178) and keeping only the most Important terms, one can obtain a 

utility criterion from the equation 

3t Ä Zw. e 
Ubx)!^!!-!!,,.*,)!!* 
r>  3x   r, x 

32E, 3E, 
ZK 

3Z 

,  c 1^ 82E 

ük e  oz 
(187) 

2 2      2 
Using the fact that c 1^ = e^ü^ and putting e « eoe « 1 one can simplify (187) 

to produce 

3E 1 » c A 32E, (1-x)H " c2 , (1-x)3 (1-2x) 8E2  «. 3E1 
I Z TT'        "   2 „    3x " c\  3z r0  3x ro x 

(188) 
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The corresponding seven-point explicit difference equation Is 

•2,jk 

N   '7,4 ' 
(189) 

^ where the difference operators I2—* ) -4) 
'7,4      v   '7,4 

are shown In equations (B12) 

and (B121) of Appendix B, respectively. The superscript n Is the time Index 

and J and k are, respectively, the x and z Indices for the spatial grid points. 

Thus, 

x ■ jAx      and     z ■ kAz 

The various coefficients are maximized for the choices 

(1 - x) -► 1    and 1 - 2x , 1 
X    Ax 

where. In the denominator, x > jAx * Ax because (189) does not apply at j ■ 0. 

[Equation (189) was taken from (178)* whereas (185) Is the appropriate equation 

at x s 0.]   After making these replacements, one obtains 

n      + cAt J L En+1   ^ E 
1 ,jk       1,jk     2k^ |r 2/^ 7 A J + A j 

:" -^A    E" •2,jk     Az   Äk 6ltj* (190) 

where 

i -= ^4) 
X   7,4 

k -= M ih) 

operating on subscript j 

operating on subscript j 

operating on subscript k. 
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One finds that the precondition (104) Is already satisfied because no diagonal 

term arises from A. when the seven-point scheme ( T7 L - 1s used. Thus condition 

(105) can be used. Using equations (B12) and (812'), IT Is trivially computed 

from (190) and one obtains 

where 

R"» 1 + 6At, 

f3 ^ 3x . /3  3, 1 . 1 '-iÄ^f^'f-i'^'^*' 
+ r_L  ^+

49i4.cr3,3.6.11 

«c 3 

\f^M i
+i (191) 

then, using (116) with q s 4, one obtains the utility condition 

cAt- 
12 
Z \^m) **£ (192) 

This Is such a strong constraint that one Immediately wonders If, perhaps, 

more generous sufficiency theorems for utility should not be sought.   The 

utility philosophy suggests a more practical approach:   Try the condition and 

then try to violate It and compare the results.   This was done for the problem 

discussed In this report and no escape from (192) was possible.    In fact. If 

the criterion was violated by a factor of order 5 In At, then classic 

Instability phenomena were observed In the computer output.   Thus, by a stroke 

of bad luck. It appears that (192) must be obeyed. 

In order to emphasize the Implications of (192) for the study of the 

propagation of laser pulses, a description of the accessible parameter regime 
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will now be given.   As a starting point for this discussion, the parameter 

values used in the actual calculation will be listed.   The electric field 

at t = 0 was taken to be of the form 

2 

= Fe      0      e    V    o/ E1 = Fe      ü      e    ^    u' (193) 

E2 = 0 , 

where 

rQ E ful1 e "w1dth of    E^r'z = zp» * a 0) 

= Jl • [full \ -width of IL at z = z , t = 0] 

IL = [on-axis intensity (in ergs/cm   sec) at r = 0, z = z   , 

t = 0, time averaged over several optical periods] 

c    oe 

zo = ful1 e "w1dth of   El^r ss 0'z» * = 0) 

z     = location of the peak at t = 0 

c2 .   2lL     -       16 PL        _ 64 U 

^T c        *^I c r
rt      

n *^n e„a r,.    z,, oe oe      o oe   o    o 

■ peak value of the electric field, squared 

PL ■ total power (in ergs/sec) of the pulse at z = z , 

t - 0, time averaged over several optical periods 

U ■ total energy in the pulse at t ■ 0, time averaged over 

several optical periods. 

The values taken for these quantities were 
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r ■ 200 cm 

5 
z = 9 x 10 cm » 9 km 

znA » 13.5 x 10
5 cm = 13 km po 

F = 4.7 x 103 [erg/cm3]1/2 (195) 

IL = 3.3 x 10
17 [ergs/(cm2 sec] 

PL = 5.2 x 10
21 ergs/sec 

U - 9.8 x 1016 ergs 

and the air was taken to be Initially In Its unperturbed state at 1 atm 

pressure and at 10oC. 

The spatial grid was composed of 80 x 16 - 1280 mesh points.   The z- 

axls was evenly divided Into 80 steps of size Az ■ 0.45 x 10   cm = 0.45 km 
5 

beginning at z s 0 and extending to z « 35.6 x 10   cm - 35.6 km.   Thus the 

peak of E1 was Initially located at the 30    mesh point on the z-axls and 

Its j -width extended from the 20     to the 40    mesh point.   The radial variable 

x has the range 0 <_ x <_ 1 and this range was evenly divided Into 22 steps of 

size AX ■ j2* but only t^e 16 sites closest to the z-axls were used.   The 

more distant sites correspond to radial distances greater than 5 beam half- 

widths.   The first step away from the z-axis corresponds to the radial 

distance Ar = 20^cm = 9.5 cm = ^ (radial half-width).   The time step size 

was taken to be At ■ 10"   sec and 100 steps were made so that the time Interval 
-5 0 <. t <. 10     sec was tre 'ersed. 

Taking these grid sizes and time steps and substituting into the 

utility condition (192)» one gets 
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1    -     !    ^       !     +   !     = 
FT   WS - "-fOSÖT   ?53ö 

12 8 
27m + ÄF k^Ux) 

(196) 

Thus, for the chosen step size, Az, the value used for At would violate the 

condition, were It to be doubled. Of course, the condition (192) Is only 

approximate, but, as mentioned above, good solutions could not be obtained 

for At ~ 10' for Az. Clearly the value -ss- used for Ax does not saturate the 

Ax piece of (196) and one could probably use Ax as small as 4x.   Such a small 

step size for Ax would, however, require three times as much spatial mesh 

points and would exceed the storage capacity of the computer which was used. 

The desire Is to use as large a value of At as one can. In this regard, 

the Ax piece of (196) Is generous and would permit At ~ 10" . The Az step 

size would have to be Increased to Az - 5 km to allow this, however. Such a 

large step size would be larger than the 4.5 km half-width of the pulse 

selected, so that no details of deformation of the pulse could be observed. 

If the beam Is made narrower In radial extent, the Fresnel length 

decreases and diffraction effects become Important. The Fresnel length Is 

310 km for r ■ 200 cm, so that one would become involved with far field o 

effects if the beam radius were decreased by more than a factor of 5. 

Making the pulse longer in the z-direction expands the time scale over which 

Interesting effects may be studied. If, on the other hand, the pulse is 

shortened in the z-direction, then one must shift to smaller values of Az 

in order to be able to follow details of the development of the pulse. 

Shifting to smaller Az requires, because of (196)* that one use smaller 

values of At. The net effect is that no profit is derived from using 

shorter pulses, because they can be followed only for correspondingly shorter 

times. 
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One aspect of the parameter regime has not yet been discussed: the 

range of power for the beam. Since the power, P., does not appear In the 

utility criterion, Its role must be determined by experimentation with the 

computer program. Very small powers are not Interesting because there Is 

very little Interaction with the fluid. In order to see Instabilities and non- 

linear effects during short times, one would wish to consider beams with large 

power densities. The extremely large values shown In (195) produce Interesting 
-5 

effects. In a time Interval of 10 seconds. Such beams can not be followed for 

more than about 100 time steps, however, because the various dependent variables 

begin to develop large curvatures and vary on a scale smaller than the mesFT^ 

sizes. Thus If one wishes to follow the development for a longer period of 

time, the mesh sizes must be decreased and eventually the time step will have 

to be smaller, and then many more time steps will be required. In this regard, 

one must keep In mind that If the mesh size Is decreased, while the Initial 

pulse size Is not decreased, then more mesh points will be required and the 

storage capacity of the computer also becomes a limiting factor. The final 

remaining option Is to Increase the power In the beam even more. The net 

effect Is that the large curvatures develop faster and the development can 

be followed only for shorter periods of time. 

One final remark about numerical solution of the laser-fluid equations 

will be made before discussing the results of the computer calculation. Strong 

growth, Instabilities and nonlinear effects, car» often not be followed because 

of the mesh sizes employed. If these strong oscillations or secular growths 

are generated by tiny rapidly changing terms; that is, if the instabilities 

arise due to ripple effects which become strongly enhanced, then a crude 

mesh size can smooth these effects out and, thereby, prohibit the occurrence 

of the strongly growing phenomena by removing their source. Very strong 
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Instabilities were found In Part II for the linearized laser-fluid equations. 

The strongest of these Instabilities are generated by very short wavelength 

ripple. The mesh size employed In the present calculation will begin to 

wash out ripple about an order of magnitude larger In wavelength than the 

ripple which Is most strongly amplified In the linearized analysis. Thus, 

one must bear In mind that some physical sources of pulse distortion will 

be excised by the mesh selected. 

Accepting the many restrictions noted above, we have examined the 
17       -S 

propagation of a 200 cm by 9 km pulse with 10  ergs for 10  seconds. The 

pulse moves three kilometers during this time and It Is possible to observe 

the onset of the laser-fluid Interaction In some detail. 

The results of the calculation are presented In Figures [1] - [17]. 

The electric field Is conveniently considered In terms of the quantity 

o  o 1/2 
|E| =  [If + B|]  . (197) 

■ , 

where E^ and E2 are the slowly varying electric field amplitudes defined In 

(162 ). The Instantaneous electric field Is thus given by 

E = |E| cos ii^t - kLz + 6E] (198) 

where the phase 6c Is given by 

6E = Tan"1 (E2/E}) 

As shown In (193), at t - 0, E^  is taken t0 be zero and> consequently, 6n Is 

zero Initially. Thus 

|E| = E1   at   t = 0 (199) 
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and E1 Is described by equations (193)-(195) Initially. This Initial pulse 

shape Is exhibited In Figure [la] and In Figure [3]. 

In Figure [1] the z-profile of the pulse Is shown at the Initial time, 

at 10 second, and at two Intermediate times. For t / 0, the pulses are not 

absolutely symmetric about their peaks. In order to exhibit this asymmetry, 

the curves are plotted as a function of |z - z | , where z Is the center of 

the pulse. This device allows direct comparison of the leading and trailing 

edges of the pulses. The center, z , is defined to be the point equidistant 

from the leading and trailing edges at |E| = 1 ( ^r )  . These values are: 

(200) 
t = 0   t = 6 x 10"6 sec   t = 8 x 10-6 sec   t - 10"5 sec 

z,. = 30  z = 34 zn *■ 35.3        zA « 36.6 c     c c c 

where for convenience, distances along the z-axis will be given in units of the 

grid size:  Az ■ 0.45 x 10 cm s 0.45 km. One notices, therefore, from 

(200) that this pulse center propagates at the velocity vc 
x  2.97 x 10  cm/sec, 

the velocity of light. The pulse peaks, however, are observed to drift 

backward with respect to z : 

t ■ 0   t = 6 x 10"6 sec   t = 8 x 10'6 sec   t = 10"5 sec 
(201) 

z,,* 30  z s 34 znz  35.2        znz  35.3 
P      P P P 

so that after 10  seconds, the peak has lost about two thirds of a kilometer 

with respect to 2 . Note that the exponential damping factor shown in ()62 ) 

is not included In the quantity |E| appearing In the graphs. For air, this 
-5 

factor Is larger than 0.95, even at t = 10 sec. Other than this effect, very 

little energy Is lost from the beam due to heating of the fluid, so the dis- 

tortion effects shown In Figure [1] are rather minor and are noticeable only 

near the peak of the pulse. Extra detail of this peak distortion is shown in 

Figure [2]. For purposes of this display, the leading edges have been placed 
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3/era\l/2 
together so that the curves intersect at |E| ■ 10 l^-o-)  and the corres- 

\cm,,/ 
ponding abscissa has been labeled 42.5, the location of this point at t = 0. 

The retrograde peak motion and the corresponding loss of fore and aft symmetry 

In the vicinity of the peak are plainly seen. 

The radial beam profile Is exhibited In Figures [3] and [4]. The 

radial slice shown at each value of the time Is taken through the position of 

the maximum, z , in the z-profile. In Figure [3] the entire beam profile 

is shown for the initial and final times only. Comparison of the curves 

reveals a small on-axis Increase extending out to the beam halfwidth (half of 

the full - -width) at -j- » 100 cm. The effect amounts to a 47% increase in 

the on-axis Intensity. Details and Intermediate states are given in Figure [4]. 

Although the radial peak is on axis in the slice through the peak in 

the z-profile, this is not the case for slices taken behind z . For example, 
-5 

at t s 10  sec, the principal peak is at z s 35.3. As one moves away from 

this peak toward the trailing edge, the radial peak moves off axis giving a 

maximal effect near z s 31. The principal peak of the pulse Is, however, 

always on axis. The radial profile at z = 31 is shrwn in Figure [5]. This 
-5 

is clearly only a small detail at t = 10  sec. The position of this off- 

axis secondary peak is also located in Figure [9] and marked with tiny squares. 

In order to follow the development of the phase of the electric field, 

the quantity JE^ is plotted in Figures [6], [7], and [8]. for t t 0.   Of 

course, at t > 0, (E^l ■ |E| and the phase, 5^, is zero. In these three figures, 

the graph of |E| is marked with dotted lines for comparison. The corresponding 

value of |E2) can be deduced from these figures, using (197). These figures 

show far more dramatic effects than the curves discussed above. At t « 

6 x 10 sec, the phase is still nearly zero and E1 is positive everywhere. 
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At t ■ 8 x 10' sec, however, E, has changed sign over a three kilometer 

region extending from slightly In front of the peak of |E| toward the trailing 

edge of the beam. This Is clear-cut evidence of the onset of laser-fluid 

Interaction In the trailing edge of the beam. It Is clear that the front of 

the pulse and the distant tall are, as yet, unaffected by this Interaction. 

It Is Interesting that the unperturbed part of the leading edge does not 

reach as far back as the principal peak. Thus, the peak already feels the 

effects of the Interaction to some degree and comparison of (200) and (201) 

reveals that the peak will now begin to lose ground with respect to the center 

of the pulse. This effect has already been noted In the graphs of |E| . 

Since there are now places where |EJ Is zero, it Is clear that the 

phase goes to j at these sites. The amplitude Eg responds strongly at those 

places where E-j ■ 0, fulfilling the obligation to conserve power. One notices 

that the graph of |E| remains very smooth, giving no Indication that the 

phase Is varying rapidly. Figure [8] shows the later development of the 

region In which E, changed sign. The region in which E1 < 0 Is now seven 

kilometers long, nearly as big as the ^ width of |E|. This region has 

advanced m» to a point well In advance of the principal peak and extends back 

far Into the tall. It appears that this node Is propagating forward at nearly 

four times the speed of light. Furthermore, there has been another sign 

reversal of E1 slightly behind the peak. It Is this kind of oscillatory 

behavior In E«, with large variations on the scale of the chosen mesh size, 

that brings a halt to further observation of the beam development by this 

method. 

On the rz-plane shown In Figure [9], the constant phase curve, E, « 0, 

Is shown In detail at t = 10 sec. Also marked, with small open circles. Is 
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the on-axis extent of the similar curve at t * 8 x 10  sec, encountered In 

Figure [7]. Also Indicated on the same figure Is the locus of off-axis 
-5 

maxima In the z-profHe of the pulse, both at t = 0 and t = 10  sec. At 

t = 0, the pulse Is described by (193) and clearly the off-axis maxima In 

z are all positioned at z  = 30 . As the pulse propagates, however, the 

peak moves slower than the velocity of light, as previously noted. The off- 

axis portions of the pulse, however, have much smaller Intensity and, 

consequently. Interact very little with the fluid. These portions of the 

pulse will suffer no delay, and move steadily ahead of the principal peak. 

One notices that at two thirds of the radial halfwldth of the beam, the delay 

disappears almost completely. As mentioned above, the small squares locate 

-5 the secondary peaks present at t = 10  sec. 

The phase front Information presented In Figures [6]-[9] Is an Interesting 

feature of the results of the computer solution. Since |EJ turns out to be a 

rapidly varying function of time. It Is of Interest to attempt to understand 

the mechanism responsible for the behavior of E,. In order to understand this 

behavior, one must realize that the phase depends on the state of the fluid. 

The state of the fluid given by the computer calculation Is shown In Figures 

[10]-[16]. Before these figures are discussed, however, it Is convenient to 

examine certain analytic estimates for the fluid variables. Such estimates 

will allow Insight Into the behavior of Ej, and, later, will facilitate the 

discussion of the computer results for the fluid variables. 

In order to describe the behavior of E«t It Is useful to write the 

electric field In the form 

iUt'—±z) 
E - ^0(r,z-ct) e 

L    c   + c.c. (202) 
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where 

.4(^,2 -4(^)2 
fj o 

£nS£e  
0 e (202a) 

and 

en-1 

*f s 1 +5^- p, (202b) po 

where F -is a slowly varying amplitude, p. Is the local density excess, 

(P-P0). and z  has been put equal to zero for the present considerations. 

Combining equations (202)-(202b), the electric field can be put In the form shown 

In (162 ) with 

[-Fsln^z^p,)! 

-4(f-)2  .4(^)2 
O 0 e  u  e 

-4(f-)2  -4(^)2 
(203) 

E2»f-Fs1n (k.z-^r-pJIe  0  e   0 

These expressions agree with (193) at t = 0 and offer a way to estimate the 

behavior of E1 at subsequent times. On the basis of (203) the nodes of E, 

might be expected to be determined by 

e-1 
cos ULZ^T-PT) ■ 0 (204) 

Actually, this expression should be modified slightly if one wishes to attempt 

to get quantitative agreement with the computer solution. It is clear that 

(203) requires E2 to vanish at z » 0 at all times. This is not the same 

boundary condition which was used in the computer solution. Actually one 

should use 
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E, - cos ty 

with f205' 

* 

z"ct z', f 

The Integrand In (205) should be evaluated at z* and t1, where 

cU' - t) = z' - z. 

Although (205)will be used In the future to analytically describe a laser beam 

quantitatively, for the present (204) may be employed to gain Insight Into the 

behavior of E,. 

It Is clear from (203) and (205) that the mechanism responsible for the 

behavior of E1 Is easily exhibited. To actually follow the behavior of E1, 

however. It Is clearly necessary to determine the state of the fluid. In 

particular, the density excess, p,, must be obtained as a function of time and 

position. In order to analytically describe the fluid for the time Interval 

and parameter ranges of the computer solution, the laser-fluid equations may 

be simplified to 

3T1 . ^ 3Pi . ac 72 /-nc, 

and 

32P 
^AP/

1
! (207) 

where T^ Is the local temperature excess, T-T . One must recall that the 

Intensity, cE , appearing In (206)Is a function of time and position. 

Integrating (206) from zero to t and combining the resulting equation with 

(207)to eliminate T,, one can obtain 
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92P, 0 

3t 

- ßol. /32zA   ■ovrn
y  /o^2     \   / -8(|-)2 

(208) 

It Is straightforward to Integrate this expression and, although the details 

will not be given here. It Is clear that p, will have the form 

8rz 

(fH ^-lle ^ F(z.t) (209) 

so that p < p on axis and there Is an off-axis maximum In the density. In 
rö 

other words, there will be a pile-up of the fluid at a distance r * •# 

from the axis. 

The temperature distribution can easily be obtained by Integrating (206) 

from zero to t: 

-8^ 
z^aP, r ' 

1     cPoCv i 
-8(^)2 

zo     dv (210) 
z-ct 

A negligible term Involving p, can be evaluated using (209) and has been 

dropped to get (210). 

Combining (210) with (204) the behavior of E^ can be visualized and 

studies analytically. Closed contours such as those shown In Figure [9] are 

predicted and other qualitative features are correct. A detailed comparison 

of this analytical procedure and the computer result Is In progress and It Is 

now clear that striking quantitative agreement Is obtained. This success Is of 

great Interest because the analytic procedure, unlike the present computer 
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-5 solution. Is not limited to 10  seconds. 

-5 
The computer result for the state of the fluid at t » 10 sec will 

now be considered. For this discussion, it is useful to keep several 

characteristic distances in mind. Since the state of the fluid is governed by 

the intensity profile 

IL(r.z,t) ^^c |E|2 . (211) 

rather than by |F.| directly, the following initial parameters are relevant. 

The full 1 -width of the z-profile 

of        P.  = -^ = 14.1    in units of Az = 0.45 km (212) 

^ 2 z o 1 31 
At z = zj + ^ = zp + 5,        -^ =0        so that   ^ (213) 

9Z 

has extrema separated by 10 units.   The full ^-width of the radial profile 

rn 
of I,   = — = 0.707 rrt = 141 cm (214) 

L     ^ 0       9 
r 3 I 

At r = ^ = 50 cm,        —£- = 0 , (215) 

I, 
so that g— has a maximum.   The maxima on opposite sides of the axis are 

separated by 100 cm. 

The local temperature excess, T - T , where T   ■ 10oC is shown in 

Figure [10] as a function of z at t = 10"   sec.   This curve is in complete 

quantitative agreement with the analytical result shown in (210).   The hottest 

place in the beam lies on the axis at z ~ 33.3.    Since the   intensity peak is 

at zn z 35.3, it is clear that the thermal peak is lagging behind the intensity 

peak.    Since z   « 36.6 at this time, it is clear that the thermal peak is 
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almost exactly midway between the Initial and final pulse centers.   Thus 

one finds, as expected, that the thermal peak propagates at velocity |  for 

small times.   This and other properties of the thermal profile are readily 

understood on the basis of the following considerations.   The temperature 

responds to the heat deposited In the medium, so that from (210): 

IM - T
0 

Z L Z"(VZpo) 
£-IL(r,z-,t-0)Ufl (216) 

Due to the symmetry of I. and the fact that It Is gausslan. It follows from 

(216) that T(z) should reach a maximum midway between z  and z for small 

times. Furthermore, the graph of T(z) - T0 should be symmetric about Its 

maximum. Both of these features are evident In Figure [10]. Since tho peak 

moves much less than Its halfwldth In 10 seconds, the integrand In (216) 

Is essentially constant. Evaluating 1. (r,z',0) at the midpoint of the 

Interval, one gets 

ZP " ZP0           ZP " ZP0 
T(z) - T0 * —j ' jf-   IL(r,z - —g , t = 0)        (217) 

From (217) one concludes that the width of the ittermal distribution should 

equal the width of the Intensity distribution.    Indeed, one sees In Figure [10] 

that the temperature distribution has width 14.1, which Is to be compared 

with (212). 

The corresponding radial temperature distribution at z - 33, the 

position of the maximum at t > 10'   se., Is given in Figure [11],   This curve, 

also, is In complete quantitative agreement with the analytical result shown 

In (210).   The temperature has reached a maximum of more than 1000oK on axis 

and the full width of the distribution Is found to be 0.67 r   ■ 134 cm, S% o 
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narrower than the Initial radial intensity width. One might have expected 

the temperature distribution to be broader than the intensity profile 

because the large radial velocity of the fluid should carry some of the 

deposited energy away. In fact, this effect may possibly be observed in 

the following way. One might compare the temperature distribution not to the 

original gaussian intensity profile, but rather to the ^ width of the radial 
-5 

intensity profile at t = 10  sec. This final intensity profile has a width 

of 128 cm or 5% less than the temperature width. The average of the two 

intensity widths is 134.5 cm, almost exactly the observed temperature width. 

This average may be the best measure, because the thermal peak is midway 

between the initial and final intensity peaks. 

The z-component, vz, of the fluid velocity Is shown in Figure [12] as 

a function of z. A double loci plot is used which omits values of v between 
-3 -3 

10  cm/sec and -10 cm/sec. This kind of plot allows negative values of 

vz to be plotted below the "axis". The zero of the velocity distribution 

occurs around z ■ 32.2, so the "center of velocity" lags slightly behind the 

thermal maximum. From (169) one might expect to find 

so that the peaks in Figure [12] would be separated by 10 units according to 

(213). Indeed, the peaks are found to be separated by 10.2 units. Furthermore, 

since the temperature curve is symmetric about its maximum, (218) would suggest 

that v should be antisymmetric about its zero. This effect is certainly 

observed in Figure [12]. The velocity distribution is delayed with respect 

to the temperature distribution, but this symmetry property is unaffected. 
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At the same value of z, corresponding to the center of velocity of the 

z component, the radial component, vr, is plotted in Figure [13]. This value 

of z corresponds also the the largest radial velocities, so that z - 32 might 

also be termed the site of greatest kinetic energy in the fluid. The radial 

velocity maximum is forty-six hundred times larger than the maximum axial 

velocity. This effect arises because of the great disparity in the intensity 

widths in the two directions. As a matter of fact 

(vr) max z      o x 105 
-^  4625        and        -£ = 2Xl£. = 4500. 
v max ro  2M 

The curve of vr is forced to go to zero, as r goes to zero, by the boundary 

conditions shown in (180 ). One notices, however, that the peak is located 

at the distance 0.25 r from the axis, exactly tne location of the maximum of 
3IL 
g^r- shown in (215). Thus one finds 

as would be expected from (177) 

Bringing up the rear in the sequence of effects is the derTsity minimum 

at z « 31.5. The density decrement -(p-p0) is shown in Figure [14]. Using 

(207), one might expect 

2   2 
£-£ - ^ , (220) 

so that p and T will have the same z dependence.+ There should, however, be a 

double time delay, since two time integrations are indicated in (220). The 

+0ne gets the same conclusion by analyzing the function F(z,t) shown in 
(209) in a manner analogous to the reasoning employed to obtain (217). 
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width of the density decrement Is found to be 14.5, about 3% wider than the 
o -p 

thermal and Intensity widths. The maximum fractional decrement —— 3 
-5 Po 

4 x 10 D. 

The radial density distribution Is exhibited In Figure [15] at z = 32, 

the location of the density minimum In the z-profile. Again, a double log 

plot Is given so that both positive and negative density excesses can be 

conveniently represented. This time a density pile-up Is observed because 

the fluid has been blown away from the axis so fast that a compression wave 

Is generated. The zero In the graph Is at 0.36 r , right at the halfwldths 

of the thermal and Intensity distributions. Thus Inside the thermal halfwldth 

the density Is depressed; outside the fluid has piled up. The radial density 

profile shown In Figure [15] Is In excellent agreement with that predicted 

In (209). For example, the zero observed at ^- ~ 0.36 is predicted to occur 
o 

J- = — = 0.354 . 
ro /S 

Similarly, the location of the peak observed at J-« 0.51 Is predicted to occur 
o 

at 

ro'7' 

Similarly, the ratio of peak height to valley depth Is also correctly predicted. 

As a matter of fact, when one takes the trouble to evaluate the function F(z,t) 

appearing In (209)> he finds precise agreement between (209) and Figure [15]. 

Thus, both (209) and (210) are In complete quantitative agreement with the 

result of the computer calculation. 

Figures [16] and [17] exhibit the parade of effects. Illustrating 

graphically the various delays, pulse shapes, and widths. Physically the 
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delays make sense.   First the beam blasts through, heating the fluid as It 

passes.   As explained above, the temperature maximum moves at j and, thus, 

behind the laser peak.   As this temperature wave passes along, the fluid picks 

up kinetic energy and the flow velocities Increase.   The center of this effect 

trails the heat wave, allowing time for the fluid to respond.   Then, as the 

fluid begins to flow away from the propagating center of velocity, density 

deficits are left In the wake and corresponding radial compression waves set 

out from the beam axis. 

To summarize the results briefly. In portions of the pulse where the 

Intensity Is small there Is very little Interaction with the fluid and these 

portions move without appreciable distortion.   The peak of the pulse, however. 

Interacts fairly strongly with the fluid and the peak Is delayed relative to 

the center of the pulse.   A parade of effects.ensues; the center and edges of 

the pulse are followed by the peak, which. In turn, Is followed consecutively 

by the thermal wave, the center of velocity, and the density waves.   The front 

edge of the pulse propagates without appreciable distortion, but strong phase 

oscillations are set up near the peak and rapidly overtake the undlstorted 

front section Indicating that soon the entire beam will be distorted to some 

degree.   The strongest Instabilities, predicted In the linearized analysis of 

Part II did not appear because they are generated by ripple with wavelength an 

order of magnitude smaller than the mesh size used. 

There Is very little hope of obtaining computer solutions of the laser- 

fluid equations except In the tightly limited regime reported here, unless a 

different calculatlonal procedure can be devised.    Since, however. It appears 

that a certain amount of analytical headway has been made, there Is reason 

to believe that, with appropriate combination of analytical and computer methods. 
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the beam can be followed for considerably longer periods of time.    Effort is 

currently being directed toward this objective. 
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PART V 

BEAM FED TURBULENCE 

Many experiments have been reported for which theories assuming steady 

state beam profiles, after Initial transients die out, provide rather good 

explanations of the principal features. However, that Is probably true only 

because these experiments are conducted at relatively low power fluxes. 

Theoretically, one expects a time-dependent state of the system because of 

the Instabilities discussed earlier. Such Instabilities are not observed In 

practice because they cannot develop within the distances allowed for the 

propagation of beams. However, alternate considerations for a beam of finite 

cross section suggest that the beam may drive the fluid Into a time-dependent, 

or turbulent, state at powers which are not completely unreasonable. 

It may be Impossible to prove analytically that such a turbulent state 

develops, because the Investigation of hydrodynamlc stability Is very 

difficult even for the simplest flows. However, an argument can be made from 

dimensional considerations, an approach that promises to be very useful. 

Namely, for the problem of a beam of radius a and power flux  I passing through 

air. It Is possible to estimate a parameter U, which plays the role of an 

effective Reynolds number for our problem. It will be shown that the parameter 

W takes on values of the order of 30,000 for a beam with Intensity I ■ 1 kilowatt/ 
2 

cm   of radius 1 meter.    Since It Is known that flows with Reynolds numbers 

substantially lower than 30,000 are turbulent, the flows for the laser-heated 

atmospheric path should also be expected to show significant time dependence. 

Consider the equations of motion for the air, and the equation governing 

heat transfer, which take the following form If It Is assumed that the air can 
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2 2 
be assumed Incompressible. (That amounts to dropping terms of order u /vs, 

where u Is a typical flow speed» and v Is the speed of sound. For the 
2 2 -5 

problems under consideration, u /v. will be less than 10 , and the Incompres- 

sible fluid approximation will be quite good.) 

p (v • 7) v = -v P - eT^pg + f- n v2 v + J- (n+n1) v(7 • v) 
po      po 

p (V • v) =-(v • V) p = 3P (v • 7) T1 (221) 

P Cp (v • 7) ^ = al + 7 • (K7T,) + ^ [n (v1 ^ + Vj^^^n' (7 • v)2] 

Assuming the Reynolds number Is high, the inertia! terms will dominate the 

viscous terms in the Navler-Stokes equation. Thus, there must be a balance 

between the inertia! terms and the bouyancy forces, which Implies that 
2 

pu /a ~ pßT-jg, where p is the density of air, ß is the coefficient of thermal 

expansion, T, is a typical value for the temperature rise, and g Is the 
2 

acceleration due to gravity. The pressure variation will be of order pti . 

In the heat transfer equation, the convection term will dominate the conduction 

term, and the beam heating will overwhelm the viscous dissipation, so that there 

must be a balance between heat deposition from the beam, and convectlve heat 

transfer, which Implies that pC uT^/a-'ctl. Combining these two relations 

3    2 
we find that u ~* aßa Ig/pC . With that expression for u, we then define a 

parameter U, which is expected to Indicate regimes where steady flow and where 

time-dependent flow may be anticipated. W is an estimate of the relative 

Importance of inertia! terms to viscous terms in controlling the flow: 

aupA   Pn   9    1/3 
W - -^ = a ^ (aßa^Ig/pCp) (222) 

10 2 
For a beam with I ■ 10     ergs/cm «sec, a » 100 cm, T   = 2730K and 

a = 3 x 10"6 cm-1, W « 30,000. 
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For many experiments described In the literature, the values of W are 

much smaller, and thus one would not expect any turbulent fluid flow to be 

observed. For example, In the original experiment of Gordon, Leite, Moore, 

Porto, and Whlnnery'-" the parameter W takes on a value about 10" , and In 

the more recent experiments of Smith and Gebhardt, J W is of order 10. 

The parameter W Introduced here Is different from the Grasshof number, 

which Is referred to In some discussions of the convectlve flows set up by 

the absorption of energy from a laser bearn.1^ In fact, the conceptual basis 

for using the Grasshof number In a discussion attempting to explain the tran- 

sition between smooth flow and time-dependent flow seems less relevant because 

the Grasshof number appears to be more sensible when the thermal bouyant 

forces are balanced by viscous forces. In the present discussions, the 

thermal bouyant forces are balanced by Inertia! effects. 

We are planning experiments to determine the critical value of W, W , 

which determines the onset of turbulent convectlve flows for the geometry 

appropriate to laser beam transmission. It Is also our aim to attempt a 

theoretical evaluation of this critical value. At the present time we can 

only speculate that Wcr may be between 10 and 10 ." ■' The theoretical approach 

appears fairly difficult because the question of the stability of flows even 

without heat sources has only been answered theoretically for very simple 

geometries.i-20"21^ The question of stability for fluids which are heated or 

cooled appears to have been treated mainly for cases In which the fluid would 

be motionless, and has not been explored for a problem like the present 

one.    ^ The first part of that problem would be to determine a steady-state 

flow pattern for a fluid with a distributed heat source within a right 

circular cylinder with Its axis aligned at some angle to the vertical. For 
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the case of a horizontal cylinder of Infinitely small radius, the flow pattern 

has been calculated by Ylh.^23'24^ 

Unfortunately, however, that solution is not of great value for the 

present problem because the size of the cylinder radius Is a critical parameter. 

Nevertheless, It Is expected that Ylh's solution will assist in obtaining the 

asymptotic form of the steady-state flow at large distances from the laser 

beam cylinder, ^nce that time-Independent flow pattern has been determined, 

the linearization of the hydrodynamlc equations for perturbations from the 

flow pattern will lead to an eigenvalue problem, which eventually will yield 

a critical value for W. Ostrach'-25-' suggests that the eigenvalue problem can 

be bypassed as the stability of fully developed natural convection flows can 

be found by using the appropriate velocity profile in the classical theory of 

hydrodynamlc stability. This assertion rests upon his analysis of the 

stability of free convection above a flat heated plate, where Instability 

first appears for a Reynolds number of 283. 

Above the threshold for beam induced turbulence, governed by U , 

general arguments'- -' lead to a size for the smallest eddies, a(W /W) ' . 

For a 1-meter beam, if W  should be about 10 , then the eddies might have 

2 sizes as small as 7 cm for a power flux of 1 kW/cm . The associated density 

fluctuation would then be expected to result in considerably increased 

scattering of the beam. 

The arguments presented here show that thyre are substantially more 

important sources of instability in the laser-fluid system than those discussed 

in earlier linearized analyses. It is felt that these fluid instabilities will 

be enhanced by their Interaction with the scattering of the laser beam, because 

of the general result that instabilities in fluids result if the heating of 
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the fluid Is greater in those regions where the density of the fluid is 

greater. '•   •' 

At the present time we can only outline the general nature of the 

effects to be exnected above a critical power level.    Much additional work 

clearly needs to ue done, both of an experimental and theoretical nature. 
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PART VI 

LASER RADIATION IN A MOVING MEDIUM 

In order to consider the effects of forced fluid flow on a laser beam, 

the equations for the laser-fluid system will be analyzed for a two-dimensional 

steady state situation. For simplicity, consider a uniform slab-shaped laser 

beam of widthta, in the y-direction, of infinite extent in the x-direction, 

and propagating in the z-direction. If there is a transverse motion of the 

medium in the y-direction, due to wind or to convection above a heated surface, 

an asymmetric distribution of temperature and density will be generated in 

the beam region. This asymmetry leads to a curving of the laser beam toward 

the source of the fluid motion as shown in Figure [18]. 

This self-curving or "wind prism" effect can be explained by the follow- 

ing simple physical argument. Consider the case of fast flow, where flow 

transit time through the beam cross section is much less than thermal conduction 

times. [The flow is not presumed, however, to move at speeds comparable to the 

sound velocity in the medium.] As the fluid passes the beam cross section, it 

is heated and becomes less dense, so that the density at y = a is less than at 

y = 0. Thus, the index of refraction at y = a is less than at y a 0, so that 

the beam is effectively moving through a prism and will bend toward the negative 

y-direction. As this wind velocity decreases to zero, the wind prism goes 

away, to be replaced by an effective convex thermal lens. In the absence of 

wind, thermal conduction will lead to a temperature distribution symmetric 

about y = |-. The hottest place will be in the center of the slab and the 

density distribution will have a minimum there. Thus, the index of refraction 

has a minimum at y = I- and the beam is effectively moving through a defocusing 

lens. The beam will, therefore, tend to spread out or "bloom" as indicated in 

Figure [19]. 
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no"] riß 17 28 31 1 
Akhmanov, et al.,L J and other groups1 '  »* -^ J y,ave predicted 

and observed the phenomena of thermal blooming and self-curving in the presence 

of a wind. These two effects will be considered simultaneously here for the 

simple slab geometry and a formula for the development of the beam profile 

will be given which included both types of behavior. The slab geometry will 

overemphasize the self-curving effect slightly, compared to a cylindrical 

beam, but qualitative features and order of magnitude will be correct. The 

results of the present model will be compared with a cylindrical beam experiment 

at the end of this section and reasonable agreement will be demonstrated. In 

fact, this comparison will serve to illustrate the importance of thermal 

conduction in the description of a "blooming wind prism." 

In order to relate the two effects and to make quantitative estimates 

of the curvature of the beam, equations (25a) - (29) for the laser-fluid 

system will be specializeu to this case. A cartesian geometry is used with 

the fluid variables T and p being functions of y only, and the fluid velocity 

v = v(y)e being a function of y only and directed in the y-direction. These 

variables are also taken to be time independent since only a steady-state 

analysis is to be attempted. Similarly, the electric field will be taken to 

be of the form 

^      iO*). t-kLz) - j z 
E = IE(y)e e  L  L  e    + c.c. (223) 

where e is a polarization unit vector, w. and k. are the frequency and wave 

number of the laser radiation, and the factor 

- 2Lz 
e 2 

included to allow for damping consistent with the damping term in the wave 

equation, (25a). Substituting (223) into (25a), an equation for E(y) is 

obtained: 
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(224) 

where, by (25b), 

e = eL + e2? (225) 

and E Is easily computed from (223): 

?=^E2(y) e-az (226) 

To further describe e as a function of p and T, the Clauslus-Mossottl relation 

will be used as shown In (25c): 

Since, for air and many other fluids, e Is Independent of T for reasonable 

temperatures, (227) can be Integrated at once to give 

(eft
+2)pn 

+ 2(e -1)P 
e =  o /Po LO—L (228) 

(V2K - ^o-1^ 

where e = [e. + e^E ]  and p are the values of e and p evaluated at 

y = 0. This relation, also, will be called the Clauslus-Mossottl relation. 

Now, if p can be found as a function of y, then (228) and (224) can be 

used to compute E(y) and the ray methods of geometrical optics can be used to 

describe the deflection of the beam. From the wave equation, one obtains the 

following relation between the gradient of e and the radius of curvature R of 

the laser beam 

l^.n-V,^ (229) 
c 
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where V n is the transverse component of the gradient of the index of 

refraction. The deflection of the laser beam, therefore, can be described by 

the relation 

t'h* (230) 

where i|< is the scattering or deflection angle shown in Figure [18]. 

In order, then, to compute p, the Navier -Stokes and heat transfer 

(conservation of energy) equations (26a) - (27b) must be solved along with the 

fluid continuity equation (28) and the equation of state of the fluid (29). 

Specializing these equations to the present situation, one gets: 

NAVIER-STOKES 

» dv dP * fo^M d2v .  (e-1)(e+2) fl dE2 . e-1 ? d£l 
dy     (2n+n )^t + ^-2 L[2ir    1""P"dyJ (231) 

HEAT TRANSFER 

41 izi w dP _ ^n+n1 /dv\ 2 , < d2T 
dy " pß V dy ■ pC7 ^dy^   pCv dy2 

, 1 /3K\ dp + /3ic\ dT 
PCV \^)j By \3TJ 37 

+ ucSe  c2 

dT 
dy 

(232) 

FLUID CONTINUITY 

pv = p v = constant (233) 

EQUATION OF STATE, IDEAL GAS 

P = RpT (234) 

where p   and v„ are the density and wind velocity at y - 0 and R is the gas oo 
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constant In units of ergs per gram per degree. To obtain (231), the Clatilus- 

Mossottl relation was used and the dependence on gravity was dropped. For 

transverse winds, the force of gravity would act In the x-direction and would 

destroy the simplicity of the present model. For "winds" caused by rising 

columns of air over heated surfaces, however, gravity could act In the y- 

dlrectlon and would cause no essential complication in the present model. For 

simplicity, the gravity term will simply be dropped In the analysis given here. 

Before proceeding, several additional simplifications will be made in 

(231) and (232). The terms involving the viscosity coefficients, Un+rTK 

are very small and will be dropped. Furthermore, the terms involving deriva- 

tives of the thermal conductivity K are small and will also be dropped. The 

continuity equation, (233)» and the gas law, (234)» can be used to eliminate 

P and v from (231) and (232). Thus, the density and temperature are described 

by the two equations: 

iv/^.^.is^^ dF^iEd,] (235) 

and 

P 

2     T 
u dT  /v n u IdP- * d T ,. acv^e E z«,^ 

where, in order to obtain (236), the relation 

K^H *-°-m]-i (2") 

following from (234)» was used. 

Inspecting (236) for the characteristic times for thermal changes. 
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one observes two characteristic times: Tgi the thermal conductivity time, 

and Tr, the flow transit time through the beam cross section. These times 

are conveniently taken to be: 

C a2p 
TC = ¥-%■ (238) 

and 

TF = f (239) 
o 

For convenience, these time scales will be compared to the much shorter sound 

transit time: 

Ts = v 
3 (240) s /w; 

where v Is the Isentroplc velocity of sound at temperature T . It win also 

be convenient to Introduce the following dlmenslonless parameters: 

w = J (241) 

8 2^-= temperature relative to temperature at    (242) 
'o y = 0 

g = ^- = density relative to density at y = 0     (243) po 

P0-P 
f = 1-g = -=— = relative density decrement (244) 

po 

Using this notation, (235) and (236) can be written In the form: 

T    JM^   1    (Kail, (£-l)(e+2) [jdEE^e-lgdal 
4   dw      yrl   dw        3p0a [2 BJT+ -T- g   dwj t245) 

and 
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TF dw  TF g dw TC dvd    c^j^ 

Now, the general strategy will be to solve (245), (246) and (224) 

by Iteration, but only one iteration will be made. A simple shape will be 

presumed for E(y) and then (245) and (246) will be solved for 6 and g. Then, 

in principle, one could solve (224) for a new E(y) and continue. However, 

the first iteration for 9 and g allows evaluation of Ve, so that (230) can 

be Integrated to produce an estimate of the beam deflection. The Initial 

shape presumed for E(y) is 

E(y) = 

E = constant, for 0 < y <_ a 

(247) 
0  otherwise 

Then, Inside the region 0 <. y £ a; i.e., 0 <. w £ 1, the derivative of E 

with respect to w is zero in (245). In both (245) and (246), the replacement 

— T      T  o"aZ 

/e7 c  /e c o     o 

can be made, wnere 1. is the power per unit area in the incident laser beam. 

For convenience, now, the following additional time scale is introduced. 

T - Wo - Wo .. CvpoTo lt3An, T
A = = = "T"":: TT1« (249) 

ac^ E2   aIL  aILe 

The time.T,, is characteristic of the rate of absorption of heat in the fluid. 

Such a flat profile will minimize the thermal blooming because none of the 
rays will cross in the first iteration. Subsequent iterations would produce 
crossing rays which would keep the iteration procedure from converging. 
Crossing rays are, of course, not allowed by the wave equation. 
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Now, (245) can be Integrated In the following way 

tp a     YTJ      3/EQ cpoa' Jo  
Ja 

3^e~ cp a£ Jo 
L ?f

W#M)^dw. 
■ rn a2 Jn ^9     ' ^W 
0  ^0 

^IT^Jn  dg  dwdw 

6»^r cp«a Jo 0  0 

6^ cp0a 
^ ?[(e-l)

2]{ 

From (228), however, one gets 

(e-l)' 
/ 3Bn9\2 

1+B a)] = 96^ (g2 + 2Bng
3) 

where 

B_ = -  e-1 -^2 ^ very small for air 

Combining (250) and (251) and solving for 6 produces 

where T is still another characteristic time: 

2 - *S CPoa2 TD = T^— 
3Bo PL 

(250) 

(251) 

(?>52) 

(253) 

(254) 

This quantity, T», characterizes the direct interaction of the electromagnetic 

field with the fluid and arises from the electromagnetic stress term in the 

Navier-Stokes equation. 

•119- 



Equation (253) gives the temperature as a function of the density and 

will be useful In Integrating (246). If (253) Is used to express the ratio 
a 
- as a function of g, then a first Integral of (246) can be obtained Immediately. 

Then (253) can be used to eliminate 6 In this first Integral and a first order 

differential equation for g results. Continuation along this line Is largely 

superfluous, however» and leads to Implicit transcendental expressions 

connecting p and w. It Is useful,and far simpler, to agree to study the 

situation for the case In which the density change Is small from y - 0 to 

y = a. 

For the case that g ^ 1, the relative density decrement, f, defined In 

(244), Is very small and It Is useful to write equations (253) and (246) In 

terms of f and work to first order In the density decrement. Thus (253) 

becomes 

6 ~ 1 + Qf (255) 

where 

Then, using 

QsHr(v) '^6)(l+3Bo), (255) 

i= Ml « ! + (Q+1) f, (257) 

equation (246) can be Integrated Immediately: 

S.|I.iLLl*dif..*.tAi (258) 

where A-j Is a constant of Integration. Integrating again and taking the 

boundary conditions f(0) = 0 and p(l) = p^ where p. Is the density of the 

fluid at y = a, produces 
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f = 
P0   YTAU-a) 

.xw TpW 
+ YTA(l-a) 

(259) 

where 

and 

• ■ fe)! • <4 (1+3B0) 

X H Y-^ 
c 1-a 

Tp  1-Y0 

(260) 

(261) 

Then, combining (251) and (259) the square root of the permittivity is approx- 

imately given by: 

1+B. 
^E = 1 + I Bo (1+2Bo) 1+2B. 

(262) 

and 
n 7" - d^ df dw 
vi/e " df dw dy " 

©t-SK^H^JI1« 3Bo^+2Bo) h\h     Xi 
2Ya(l-o)  \T;/ V " .X 

Since this derivation has proceeded under the assumption that the density 
po-pl decrement, f, is small, the first order term involving is small compared 

to 1 and will be dropped as will terms of order B when compared to 1. It is 

convenient now to introduce the notation: 

YTA    YTC 
w YTC 

where the dimensionless power ^ is given by 

fi 
a^I, 

HOT and f= fie-™ 

(264) 

(266) 
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The deflection of the laser beam can now be given in the form 

1  ea 

x ex-l 
(266) 

In order to analyze this expression for the curvature of the laser beam, it is 

convenient to rewrite a in the form 

,2 

Vv   veo. ? (267) 
D C V 

0 M0    S 

For propagation through air at 10oC, the two terms on the right hand 
3 2 

side of (267) are both of order 10" when v ~5 (km/hr) and IL = 1 (MW/cm ), 

so a  and yo  can be considered small compared to 1 for velocities less than 

50 (km/hr) and powers less than 100 (MW/cm ). From equations (261)* (238)> 

and (239), one has 

so that for wide beams or fast winds, the conduction time is very long, com- 

pared to the flow time and X will be very large compared to 1. Under these 

conditions, the ratio of exponentials in (266) tends to be smaller than j , 

so that most of the rays bend into the wind. For large enough y, however, the 

ratio of exponentials is greater than j , so that some of the rays have 

negative curvature. Thus the downwind edge of the beam bends in the direction 

of the wind. Therefore, pure beam curving with no thermal blooming will never 

occur. 

Physically, this is easy to understand. The hottest place and, hence, 

the minimum of the Index of refraction, must lie Inside the beam region. On 

the two sides of this minimum, the rays will bend In opposite directions. The 
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faster the wind, the larger X will be and, hence, the larger y must be before 

the curvature changes sign. In other words, the wind can blow the hottest 

spot away from the center of the beam, but It can not blow the hottest spot 

entirely out of the beam. The position of the minimum of the Index of 

refraction Is easily obtained by determining the value of y for which the 

right hand side of (266) vanishes: 

B } .Mi. + log (i-e"
A) 

«1 log A for large X 

^ + A"   for s,na11 A 

(269a) 

(269b) 

(269c) 

In particular, for very small X the minimum Is at the center of the beam, 

whereas, for large X, the minimum Is very near the downwind edge of the beam. 

As the wind velocity goes to zero, equation (266) reduces to 

(eft-l)? M     -(v1)r   fl *1 dzjv =o ' 
2a (WO) [2 " aj (270) 

which Is symmetrical about the center of the beam as would be expected for pure 

thermal blooming. The rays at the edge of the beam have the maximum curvature 

r   max 
^B '  y 

dtp 1 
dz v0 2 

(vn/> 
2a (l-ya) (271) 

In terms of this maximum curvature for pure thermal blooming, (266) can be 

written In the form 

1^-2 
a n 

1     1 
X " eA-l 

(272) 

Clearly j; Is a monotonlc function of y, giving the largest positive curvature 
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at y = 0: 

^max \}"k] 
«(1 - 4) ?B     for small X 6y ''B 

'X ^B for large X 

(273a) 

(273b) 

(273c) 

As may be seen from (273a), |      decreases monotonically with the wind velocity 

and is less than £„ if there is any wind at all.   Thus» the wind blows the 

blooming rays back into the beam on the upwind side of the beam. 

The minimum curvature; that is, the largest negative curvature, occurs 

at y = a: 

^min ' ' 2 Ul ' \l 'B 

«" ^ * F ?B     for sma11 X 

«-2 (1 - j) 5B   for large X 

(274a) 

(274b) 

(274c) 

Thus, it is clear that 'min increases monotonically with the wind velocity 

and is greater than Ko  if there is any wind at all. The effect of the wind on 

the downwind side of the beam is to blow the blooming rays farther out of the 

beam. 

Comparing (273) and (274), one finds that 

^max ' ^min ' ^max 'min -25c (275) 

regardless of the wind velocity. Thus the wind has no effect on the size of 

the spread of curvatures created by the thermal blooming. For v = 0, this 

spread is from CB to -5«, whereas for extremely fast winds, the spread is 
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essentially from 0 to -2£g. Thus, the curvature spread can not be decreased 

by a wind, but It can be translated by, at most, half of its extent. There 

Is, however, a very dramatic shift in the fractions of the power being 

scattered into the various curvatures. This arises because, for large X, 

the distribution shown In (272) is very flat as a function of (^) for y < y . a o 
For X = 100, for example, 

> 0     for     0 < f- < 
•B 

0.01 >^i->0     for     0<^<-^= 0.96. 
— ct^p ~ — a — a 

Then, for y > y0, the curvature becomes negative and falls rapidly to 

?b■ TO- ! ■ ■0-99 
'■h 

at y = a. The net effect, therefore. Is that about 96% of the power goes 

off with curvature C s Cß/50 and the remaining 4% blooms strongly out of the 

beam. For a non-uniform beam profile, the conclusions are qualitatively the 

same, but the distribution Is no longer monotonlc as In (272). so that some of 

the rays will cross. 

One of many ways to exhibit the nature of the scattering distribution 

given In (272) Is to show the scattering cross section for scattering of power 

Into the various curvatures. Thus, one can define the cross section 

a(E)dE = ap(£)dc = jaser energy flux scattered Into range d^ 
^'  % "  »^,»'w»  laser energy flux density 

(276) 

■|(l)>-# 
The quantity p(C) Is the fraction of the laser power scattered into curvature 

C.    The distribution   p(C) Is normalized to unity: 
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'max 

'min 

P(C)d? ■ 
'max 2KD - K 

2C ~^XE " I 
log 2f - \E— = T log e = 1   (2/7) 

B A^  A   ^B  ASax  A 

'min 

where Km^n and 5rnax are given in (273a) and (274a). The fraction of the power 

being scattered into negative curvatures is 

P(£)dC = j; 

mm 

^('+%i-)-'-l eA-l 

«^f-A for ]arge X 

The distribution p(C) is sketched in Figure [20] for small wind speeds. 

The extreme values of the monotonic distribution are given by 

by 
eX-l 

(278) 

^B P^max) = -W- 'max 2X 

and (279) 

^B P^in) = Hr1 

As shown in the figure, the distribution is sharply enhanced at Crnax. even 

for X - 3. Because of this sharp peaking of p(0 for even very slow wind 

speeds, the thermal lens-wind prism effect may be pictured as in Figure [21]. 

At each point in the beam path the beam is essentially passing through a wind 

prism with a small strongly defocusing thermal lens perched on the downwind 

vertex of the prism. As X increases, the half-angle of the prism decreases 

rapidly and the blooming lens increases its defocusing power, but shrinks 

rapidly in size so that only an infinitesimal portion of the downwind edge of 

the beam is affected. As the wind velocity Increases, both the curving and 

the blooming effects decrease as indicated in equations (273c) and (278). 
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km cm JO rr = 278 j—r . for example, with a = 1 cm and I,   = 1 ^ , 

one has, from (268): 

1400 a 2   
vo 

icf 1400 

so that at a given point in the beam, about 0.5% of the beam is affected by 

the thermal lens.    The dimensionless power shown in (265) is 

^ 0.043 a2 " 0.043 
6 1 3 

where the values:   a - 3 x 10     cm    , K ~ 2.5 x 10   ergs/(deg sec cm), and 

T0 * 283e,K = 10oC have been used.    The blooming edge curvature is then given 

by (271): 

~ -o e.-l 2x ~ 5.65 x 10' (0.043 a) = 6.04 x 10"° a h * la     (0-043 a^ 
z 6.04 x 10"6 

so that, from (273c), 

10 — 
5max = (8.64 x 10"9) a   -y^- = 8.64 x 10"9 . 

o 

Thus, after the beam has propagated 1 km, it will have an inclination of 
-4 the order of 9 x 10     radians ~ 0.05 deg.    For comparison, without the wind 

the pure thermal blooming would have produced a 70° divergence of the beam! 

The ratio of \l>mx to tj/g is 

8.64 x 10-9        43 x 1(r3 

6.04 x 10"° 

so that the wind can play a significant role In holding the beam together. 

The fraction of the power lost from this beam in 1 km is roughly 

(1 - e'0,3) + yj^ log [6.04 x 104] = 0.258 + 0.008 
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* -ctz so that the major loss of power arises from the damping factor e  in the 

■pfWtence of the 10 fe- wind. hr 

It is possible to compare the predictions of this section with 

experiment, using the nice results of Smith and Gebhardt.  ■' The beam of 

a 20 watt cw CO« laser operating in the fundamental TEM mode was passed 

through an enclosed, recirculating wind tunnel with a 100 cm optical path 

length and a variable wind speed from 0 to 500 cm/sec. The absorption of 

the air was increased more than a thousandfold and was controlled by the 

addition of varying amounts of freon-12 (CClgF«)- A vertical optical path, 

transverse to the wind direction, was used to minimize the gravitational 

convection effects. The ~ beam diameter was 0.4 cm at the tunnel entrance e 
window and, in the absence of thermal distortion, the -diameter was 0.6 

at the scanning detector which was located 20 cm from the wind tunnel axis 

window. Of course, the experiment was performed with a cylindrical beam, 

but one might expect to get semiquantitative agreement from the present slab 

beam model, particularly if one concentrates on the shift of the beam peak 

into the wind. 

To consider the predictions of the slab beam model for the experiment 

of Smith and Gebhardt, one can use equation (272). A ray initially at height 

y will have the trajectory Y(y,z), where 

^ = -tan ip z -ty. (280) 

Differentiating again and using (272), one gets 

A . djj; s / -f (y) e"az for z < L hM x 
^ dz '    0   for z > L VZ8'' 
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where L is the tunnel ieiglh (100 cm) and 

f(y) = 2?B li •-•]• eA-l. 
(282) 

Integrating (281), one has 

dV, .Iki. j('-'"C'Z>f<"-2<L 
a? a (1 - e"aL) for z > L 

Another integration produces: 

(283) 

Y(y.2) = y - ^[(1 + oL) e"aL - 1 + (1 - e"aL) azl for z > L  (284) 

In particular, for z = f L = 100 cm + 20 cm for L = 100 cm, the height of the 

ray at the detector will be 

!M = "'j'-f1'. t -r- 9W) 1 - fxT I 
a a     L  e -1J 

(285) 

where 

8(aL) . [l + (i - i) (l - e^)] . 

The corresponding intensity at z = r L is 

KY, f L) *o e                          lo e 

Uyj      g                25RaL 
V    /z B | L     1 + -|~ g(aL) 

0                 a^a 
[-•1 k- > J 

(286) 

The peak in this intensity distribution occurs for y = 0 and its location is 

determined from (285) to be 

a 

25RaL 
-4- g(aL) 
a a k] (287) 
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This relation is conveniently put in the form 

«>-¥[-»'-#-A7] (288) 

where 

G(aL) = g(i) 
glaiiy (289) 

In order to compare the shift of the peak with the results of Smith and 

Gebhardt it will be necessary to put numbers into (288). The numerical values 

for the various parameters, appropriate for T ■ 10oC are shown in Part II of 

this report. The width, a, of the slab beam will be taken to be 0.4 cm, the 

- diameter of the experimental beam. The 20 watt beam used would have a 

"uniform" transverse linear density of 20 watt/0.4 cm so that I, will be taken 
2 to be 50 watts/cm . Then, in cgs units, one has 

X = (HT2
) 

avo = <0-806) vo ' ^ vo 

<?- 
a2aIL 

KTO 
1.146 aL 

h' 4.02 x io-4J aL 

25BaL 
20.12 

Thus, for the experiment under consideration, (288) can be written 

•G(aL) f = (9.95) 1 1 
i^5 v^   ^55 v„ 

0  e    0- 1 

(290) 

In Figure [22] the function 6(aL) is plotted versus (aL) and, also. 
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Y 
- G(aL) -f- , the RHS of (290) is plotted versus (rp). Data given by Smith and 

o 
Gebhardt for aL = 0.14, 0.53, and 1.0 are also indicated on the figure. One 

notices that the data for various aL does not all lie on the same "universal" 

curve as suggested by (290). Thus, as expected, there is some difference in 

a slab beam and a cylindrical beam. The important feature to be noticed, 

however, is that the order of magnitude of the predicted effect is correct 

and the "saturation" of the prism effect encountered by Smith and Gebhardt is 

predicted by (290). It would certainly appear that thermal conduction effects 

can account for the saturation of the deflection and that the other explanations 

suggested by Smith and Gebhardt are, perhaps, unnecessary. 

In Figure [23] the intensity distribution of the laser pulse at the 

detector, determined by equation (286), is shown for vo = 2 fi^" » 10 fi^ » and 

for v0 extremely large. One notices here the rapid transition from the 

uniform spreading, due to thermal blooming, to much narrower distributions, 

peaked on the upwind side, as the wind velocity increases. The qualitative 

features of these curves were, of course, already illustrated in Figure [20]. 

This analysis has been undertaken in order to estimate the relative 

importance cf thernal blooming and wind curving. Certain qualitative features 

have been discussed and perhaps some insight has been achieved. The approx- 

imations made have been rather strong and cylindrical beams and non-uniform 

beam profiles have not been properly considered here. These matters are 

currently under study and results will be presented at a later time. The 

approach to steady state and the usefulness of working to first order in the 

density changes is also under study. There are difficulties involved in 

asking for steady state solutions'- -land the effect of a wind on such matters 

must be analyzed carefully. It does, however, appear that blooming in the 
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absence of a wind is a quite serious problem if one wishes the beam to 

retain its character over long distances.   A fast wind can, apparently, help 

considerably to alleviate the thermal blooming. 
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APPENDIX A 

Computer Program for Power Threshold for Instabilities 

One can show from equation (68) that the threshold power for 

an instability lies near k=0.01cm"^.  A search was conducted for 

various u  with k fixed at O.Olcm" . The power threshold was then 

located at ^(S^SxlO"2)-k and found to be  Ptj1=312ergs/sec. 

In this computation the following notations have been intro- 

duced into the computer program: 

S      : k 

R      : k3 

B(6)    : Coefficient of the S^*1 order polynomial obtained from (68) 

ROOT(5) : The roots of the dispersion relation. 

DET    : Decrement of the power. 

DCROOT  : Subprogram for the calculation of the roots of a 
polynomial. 

Following is the computer program for this computation. 
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Mcuiwtrpor    ni'Tinws »MAIN»; 

nci   (w.fir.j.MonTc: »,ur.((1),i:j,F?,n,r/l,Fo,r6.r7,rs,r9i CPLXUM   J 
W=I,.l; VS^SORTU.lT'JirVJ; 
DCKOIll!   PUnr.   (AINIAC(.IRÜ(ITI ir.MKtl'KC.IN) ; 

/•Tills   IA  A  SununutiMi:  (OR 
TH,; POOTS  or  A COMPLEX  PHLYNOMIAI   OF ni-GUfF ir.ss  THAN NXV WITH  Ih. 
OFXIMAL nir.iTs Ar.r.imAr.v IN STMRAOP*/ 

HXY*6| 
nil   (A(«>l      .70,Zll,7?t7^iH7,H3,XL^,Xl.3,n7,C?,r/.O,FJ!l,l:72,RnOT(5> 

mir^i.krr.i'nM»      cr-i x  (u.ls 
IF Atn-.o THFN no; cui FILT ISYSPPINTI LIST- («LrAonio coEf-PiciCNT'is zi: 

RO   IW   nClMlt'T« »;   FXIT!   FNt);   IF   N >«=   tIXY   |      » <      I   THFN  Ort;   PUT   ril.F   (SVSPRINTI 
IIST (M)ür.PEC nr POLYNOHIAL  IN nr.RooT is HOT PETWEFN O AND NXVM; 

rxn;   ENn; 
NUBO;    M^NflS    RIIGCN   *   A; 
Sit   zo=-i.;   71«=!.S   77^.n;   H?«-l.;   XI.7=-.5;   D?v.O;        no   |IM  TO  1   BY  ->; 
IF   Alll = .0  THHN On;   Mü.NIUI;   ROOT (MR »=.0;   ENO:   Fl >F   CO   TO   S7; HNOJ 
S7!NN=I;    IF   m   <     ?   TMLN GO  TO S75;   FI SF.   IF   NN«2   THFN  001   l^—hUlfMlW 
NR*NK«n   P0nT(Mn = 7-<;   GO   TO  S70;   IHOS   FZO^AINMI-AINN-II + AINM-?» ; 
r7I«A(i;M»*MtlN-I>*A(rjM-?) ;   F72=MliMI;   NN=NN-I J 
%M   07 = F7?«I ri 2«l)7 l-F/l *n2**?«F70*Xl 2*«7; 
BUFC?)»C7»S0RT(r,2«*2-/..*F72*l)7*Xl^«'»FZO+XU-r? l*n2*FZ?)l; 
0UFI3»=2.*r.?-f<ilF(7l ;    IF   AnSIBUFIUI   <"   AnSlfMMIZH   THFN   IF   AI\S ((MIFI ?)! 

<  l.r-io THEN DO;   xi 3=1. ;in»nz;r.n TO si3;FNo;Fl.sn oo;n<jF('«l = »ui:<?i; 
no TO sio; F.'IO; FLSF iHiFUt«ftumii 
S10:   XL3'-?. *r,T?*02/HUF('.);   H3=XI 3*H?; 
S13S   73«H3*7?;   II    AnS(H3/73l   <     ACC   THEN CO TO  SIS;    EI.SF   FZ0=F7.1; 
F71=F721 
•SIAO:   lUIFID-l.;   FZ?=MNNMI;   nn   |>NN  TO  I  IW -I;   Bum l = rMIFI 1 I *Z35 
FZ2^F72MUIF( n*A( I I ;   FNO;   IF   ADSI F7.2/rZ 11   <     TO.   THEN GO   TO   SIO; 
CLSF   XL3 = XL3/?.;   in-Xl^*!!?;   Z3«H3»7?;   CO  TO  ST'.O; 
SIB:   »Pr|i3;   Xl?=XL3;    Zl = 7li   7If72;    72'=73:   02 = 1.«XL2;   CO TO   S.3; 
ST9S    MP.rMntJ;   Pr>nTnin»=7^;    IF   M»   <"     N   THFN  OtV   00   U?   TO  NN; 
Ain«A< l-n*>HinUNKH AU I;    F.NOI   M='JM;   GO   10   SI i   l:Nii;   hLSFS 
S25S   A = RI"GEH;    IF    ICMK^O   THEN   RETURN;    EISE:   RfCr;N=.0*A;   RlCEN ( I 1= 1. ; 
Rrr.FN(?)r-P0OTIl);   00   K = 2   TO  N!   10   JMUl   TO  Z   BY   -I ;      PFGtN( J| «RF GFNI Jl- 
ROnTIK)*('Fr,K(MJ-l I;   EK'O;   CMOS   RlGFN=A(l)*RF6l;N; EN'J   Of.ROnT; 
II^IS 
S<=.oi;    PL =100.;    nrT«ioo.5 RET :  no KAM TO IO;    PL>=PL ♦OFT; 
00   JA«>~5   TO OS 
R«:8.«r>E-5*Sf JA*V»/'7.F< 10? 
Fi«-W*0.«7*S**^;     F7=-1.175E9*S*»?;     F3-W*l .5605Ffl*S**'»l 
F *>'- U..F 10*S^'R+W*«». Ü4 ?; 
F5=9,F.?ntMi,,*S)»*2-7. J'.025F-«)*S'»*A1*W*2. 7FU*n*S-2.02ÜE7 ; 
F6»-6.3'i7F-rj»S»*2<;PL;     F7= (-V/*n. 6O7F-0»2.5''iE-i*S*R I *S**2*PL! 
FR«I W*3, <H7E3*R*S-I.<)0^«:A*S**?1«S**?*PL!     F9»-W'»2.S87F 1 3*S««««PL S 
nm»i.;    R<2l»FUr*i    n(3irF?*Fi*F4+F,;<-Ffcs 
l»m=Fl*F5+EZ*F« + F3*F7s      Bl 5) =• F2« FS*F 3*F« «FB;      B( 61-F3*F5<F«»} 
NA»55 ICHK^O;C*LI.   OCPOtlT   (B,NA, I. F-lOi ROOT , ICHKi BO» S 
PUT   FILE   ISYSPR1KTI   EDIT   IPLiSiJA.Rl    ( SIC |P( 3», EU 11 Al, Ft 10i 71 , E ( 1 01 ,F 120, 1 0 11 ; 
PUT   FILE   ISYSPRINT)   OAT A   (ROOTl; 
00   JJ»l   TO 5!      IF   IHAGI RilOl (JJJI   <  0.   THEN 00; IF   H«3  THEM  00; 

PUT   FILE   (SYSPPINTI   F01T   «PLl    (FIlO.'illS     GO TO  LAS     ENO; 
ELSE  OO;      II^IIMl     PL   -PL~OET;     PÜT=0.1 ♦OFT;     GO  TO RET;     ENO;     ENO: 
ELSftENOt     EN»;     ENO;     LA   I   ENOS 
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APPENDIX B 

Difference Operators 

For the computer solution of the laser-fluid equations 

described In this study, the differential eouations were 

converted to difference equations.  In order to minimize trunca- 

tion errors, very accurate s^ven point difference formulae were 

used to represent the differential operators.  These formulae are 

somewhat troublesome to construct, but a useful procedure Is 

described below.  At the end of this appendix, a few of the 

difference formulae used In the computer analysis are listed. 

Definition; The n point Interpolation polynomial (abr.NIP) of the 

iunctlon f(x) In terms of the points x1,x2, ... ,xn. Is denoted by 

{f(x)}n and 1» a polynomial of order (n-1) approximating f(x) In 

the Interval (xi,xn].  {f(x)}n has the property that 

{f(x)}nlx-x »fU^    for 1=1,2, ... ,n (Bl) 

and Is explicitly given by the Lagrange formula 

n-1^ (x) 
{f(x)L = I-i-—-fU.) (B2) n  j-OVi(xi)   i 

where 

^i(x)»(x-x1)(x-x2) ... (x-xi_1)(x-xi+1) ... (x-xn)  (B3) 

In other words ? (x) is the product of all factors of the form 

(x-x ) except that the factor (x-x ) is omitted. For convenience 

the notations, based on (Bl), 
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(f<It')nlX«.-(
f<]ti'>n-f('ti'-£l (B4' 

will also be used. 

Definition;  If L is a differential operator and f(x) is a suitably 

differentiable function of x, the n point difference auotient 

(abr.NDQ) representation of L, denoted by {L}n „, is defined by 

the following relation: 

{L}n/yf(x)-L{f(x)}nlXBy4;{f(y)} (B5) 

The subscript y on {LL v merely indicates the point at which the 

expression is to be evaluated.  As in the case of the NIP, the list 

of the n mesh points, x. # is suppressed in the notation. For 

onvenience the notation 

^n^x.^'^k     where k-1'2' ••• »n (B6) 

will also be used. 

The NDQ's of the operators (■r-)im have the nice property that 

{f (X)} - nil ixqdl{li }    f (y) (B7) 
n J»0  Ji  dxJ n,y 

for any x and y in the interval (xi»xn)» since the Taylor expansion 

of any polynomial about any point produces that same polynomial. 

As special cases of (B7), one has 

f..f(X.)-ni1 "H-y'V,3   „yl.-'i1 'Xl-V^   f(x)       (B8) 
1   1 3-0   V      dltn,y    j-0   j:   dxn,k 

for any i and k in the set 1,2, ... ,n. 

Now, by combining (B2) and (B5) (or by inverting (B8)), one finds 
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(|/    £(x).(ä-)m(f (x)}   .(fc)» S   jVÜ.f 
dx n<x dx n    dx    i.x  ^(x,)  1 

n        n. n.       ^ (x) fj^ 

'i^l jl=l'"jll   ^(x^'cx-x    )...(x.x    ) (B9) 

1 Jin Jl Jin 

where  the prime on      j    indicates that j, ^i  and  j, ^j, ,   for k^k'. 
-j sl k      k k 
k 

Now (B9) can be written in thr: form 

{4-}  f(x)= Z Ai(x)fi   where 
dx n^    i-1 

Ai(x). S'... S'-IiiÜ I       (BIO) 
h=l      V1 'i(Xi, (X-XJ1

)"-(X-XJI
) 

'm 

Thus, if one agrees to use the NDQ as his approximation for a 

differential operator, then (BIO) shows how to express the mth 

derivative of f(x) at the arbitrary point x in the interval 

[x »XjJ in terms of the values of f(x) at the prescribed mesh 

points x..  Actually (BIO) is somewhat more general than required 

for the computer program described in the paper.  For the purposes 

of this program, only the following special case of (BIO) is reauired; 

vm    n 
f^ where i,k=l#2, ... #n and {■H  fk= 2 A. k 

*dx'n,k i-l  ' 

5'..-  g'  !i(x^) 

^l"1  ^m-1 ^(xi) (xk-xj )*-*K-xj ) Jl        Jm 

Ai k"- 2,  • 2, : 7 V ■; r-^ r    (BU) 

Formula (BIO) or (Bll) guarantees explicit NDQ representations 

of any differential operator L and shows a way to compute it. 

Although a great deal of computation remains, even with formula 

(Bll), at least the work is straightforward.  Clearly, the 
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definitions and procedure shown here are trivially generalized 

to cases with more than one independent variable. 

In the list below, the various difference operators used 

in the laser-fluid computer program are given. For each indepen- 

dent variable the grid spacings were taken to be uniform with 

sizes denoted by h or k. The great variety of formulae was used 

in order to handle the special situations near boundaries. 

A.  Center Difference Scheme 

<9x/7,4 i h[4  i+1  i-1  20  1+2  1"2  60  1+3  1"3J 

{^}7,4fii2[l'fl+l
+£i-l'-|5<fi+2

+fi-2'4ö<fi+3
+fi-3>-llfi] <B131 

•«- ««<*««■ 

B.  Off Center Difference Scheme 

1. 
{^}7,4±1

£l^[-r2fi+4fl±l4£in-,5fl±2+fefi«i5fi±3-|öfi±4]    ^ 
■ «M.t t  ■ ■ iQc 

1 1 

upper signs lower  signs 

) 9 I *    lo f   21f   JLlf       JLfilf       ,17f 11   f      _3 f täx/7/4?lfiTr2 ["TÖti'T8Ii±l"^lÖIi+l'^6ti±2  180riT2  10ri±3 

^5fi±4-fefi±5] (B15) 

^ 
i i 

upper signs lower signs 
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2. 

it}7,4T2'i=^[- S*i* f«i±l- i*i„- f
fi±2+ 1*1*3- ifi±4+ ^ltS] IB«) 

'Q -~ - - - 

upper signs 

^*. 

lower signs 

{^}27,4T2
fii2[- fei- Wi*l*  Iöfin+ ^1*2" !|fi±3

+ !fi±4 

" Tfi±5
+ 11 f 
I80ti±6 (B17) 

■■■■Q- 

Upper signs lower signs 

C,  Mixed Differentiation (Center) 
2 r 

idxd?/fij'2hk[2(fi+l,j+l+fi-l/j-l"
fi+l/j"

fi-i,j-fi,j+i-
fi,j_i) 

- |ö(fi+2.J+2+fi-2,j-2-fi+2#j-
fi-2,j-fi,j+2-fifj-2)

+ 

4 90(fi+3,j+3+fi-3,j-3"fi+3,j~fi-3,j""fi,j+3"fi,j-3) 

12 
18 ifii .' 

(B18) 

»■ «a» i < 

D.     Mixed Differentiation   (Off Center) 

l^xdyf  ij     2hk[    lO1!]4 I^i+IOTI4    90fiTl,j±l+  3^^2052 

- IL-f. -3f +4f lf 

dx     i] ox       i] 
(B19) 

-144- 



L£Jf ^L Z-f     _  27 + !_ 
jdxdyl   ij     2hk[   "lj     l^i*l,j^l    10 iTl» j±l       4  i+2,jT2 

*lf 4. ^ if 11   f "  18ri+3,J53+  S1!^^^"  2rii5,j+5+ TsCTi+e,:)^ 

lF'2fiJ (B20) 

<h 

upper signs lower signs 

(Additional points on the axes are to be selected for the 

unmixed derivatives) 
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APPENDIX C 

COMPUTER PROGRAM FOR THE LASER-FLUID EQUATIONS 

In this appendix, the computer program for the laser-fluid system 

used to obtain the results discussed in Section IV is exhibited.    Before 

programming, certain simplifications were made in Equations (174)-(186), 

based on the fact that   a, the linear absorption coefficient, is very 

small in air at 10.6 \i.    For x / 0. Equations (174)-(179) were reduced to: 

l£ a . UO-x)2 Ür + jbxl v   +Üz] + ihx]iv   a^y   tA        (C1) 
3t        r[   r0     8x r0x   V     3z J       ro       vr 3x     vz azj ^u 

3T s 1 i«:   fd-x)4 32T .  (1-x)3 /l-2x\    3T .  32T1 

0 

2 ^i^m^'^m V      L   rÄ       y    " '     r     x o o 

2- 

/ 0 

n'  fM  y^ 3V,.     , y       3V, n    .2 3Vr 3V n + n     U-xj   v r + J^x v   __z U-x;   _r _2     + 
Cv LT^X   r 3x      rox   r 3z ro      3x   3z J  + 
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v 0 L   r ' av'        K ' ro"      3x-      '•o 
^ 

lü* . ii   R T 3o 4 ,     ,. fn-x)2 a2vr     I.« 3V     32VT1 at pr»^*'^'^^^^^]* 

0 o * ■ 

(C4) 

(C5) 
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0 0 

For x = 0, equations (181) - (186) become: 

3V_     3V %--liho£*£y^] <") 
2     ,.„ v2. 

ä-JteS-a-r^©-®] 'v vrÄ   3x       3z  '        V     Lr 
0 0 

C       L\3X /    T7     7? 3X    3Z   J      ,VY  UL3t      VZ  3Z J r        r o        o 

*^-^(E2 + E|)j-V2|L (C8) 

3V 

w-' 0 w 

o 

if'(EiirtE2ir) + f <E?tE|)||] <"« 

2c A 
!L..iici/l    3E2tl

9'E2     ,   «l\ 



3t       ejü^   L 
1    3 El + 1 

r^ 3x2      ' 

a^,       3E2\ 

fa^l^^h c. Mr   ' 
'    3t ^l 

(C12) 

In this computation the following notations have been Introduced Into 

the computer program: 

N ;   The number of steps In x (or r) t 

NN Total number of steps In x. 

M The number of steps In 

MT i   The number of steps In time. 

DX '    AX EZ Eo 

DY I    AZ KL h 
DIT At KM 2KL 

VI    . X WA   : Zn+n' 

V2 0-x)/ro WB n+n' 

V3 (l-x)2/r0 WC n 

V4 (l-x)3/r0
2 WD n' 

V5 (l-x)4/r0
2 WE T(Y-I) 

V6 •   1/x SF -RT/M 

V7 •   1/x2 WG 1/ro2 

V8 (l-x)/r0x SH 2/ro2 

V9 (l-x)30-2)c)/i t* WI Po 

V10 (l-x)2/r0
2x2 UJ eo 

DU 1/Ax UK V1 

DV 1/(AX)2 WL :   WL/2 

WP   : ^o-V 
WQ c2/a)L 

WR c2/2u)L 

WS l/2wL 

WT Rp/M 

WU •</Cv 

WV 2 

WW Un+n') 

WX ac/2Cv 

WY 1/2 

WZ V'o 
VA 2/ro 

VH n/Cv 

VI 2n7Cv 

VN 1 
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nw 

DZ 

DT 

Hl 

H3 

H6 

H8 

1/AZ 

1/(A2)2 

l/2(Ax)(Az) 

UM 

WN 

WO 

VCU0*2)p0-(e0-l)p] 

e H4 

1/p H7 

v^ H9 

X(l.K.L): E, 

X(4.K,L): T 

PXA.FXB.FXC: j- 

(eo+2)Po 

3(e0+2)(Vl) 

2n/rÄ
2 

de 

1/e 

(ve) 
X(2,K,L): E2 

X(5.K,L): Vr 

SXA.SXB.SXC: ^-y 
3x£ 

vo 273 

VP 3 

VE •   (Y-1) 

H2    . 

H5   : 

(v1)H1 

32e 
—V 
dp' 

X(3,K.L): p 

X(6.KiL): Vz 

32 SZA.SZB.SZC: *-* 

FZA.FZB.FZC: fj MDA.MDB.MDC: ^ 

Following Is the computer program for this study. 
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INOUNÜfcRI LOW» J   OPTIKSt   PP(KEÜUi«C   OPTIONS   (MAINtt 
NN>23;     H'Ul;     HT-lUO;     N-16:     MTT-lliOt     IHti'mi     ZN-Nt      tHJ-HI; 
OCL   (LVfSll7)iS2t7ilS3(7i.S4(7)fS&(7lfS6(7))   LAUEU 
OCL   (E2.I)N. VC.Vr,     CMC.   llJ,ll, 

ÜX,ÜU,liViOV,UW,U/,üTfDH.üA.Ub.Ot.ÜÜ.OüiOF.ÜGtOH.OJ.ÜJfOLtOM.ONfOO.üP.OOt 
OK,ÜP,WU,W«>,wn,Kll,.n2,H13,Wl'.,CMT,Gm2n, 
XRfO&tOTlÜUfUVinri(.)X(OY(U2(PAtPMfPCiPli»PttPF.PCiPHfPNt 
WA,WHiWr.iWl),WttWf ,V.O,WH,Wl.HJ,hKfWL»WM,WN,HU,WP,WU,WK, 
WS.WI ,KU,WV,rtKlWXll/Y,V/Z,Wl,W^,WJ,WA,H5,t.6,w7,VA,HA,HB,HI),Me,HF,MH,HSiHl,H2,Hi, 
IH(M!>.H7iHttiH«iVH(VliVU|VU.VPfVlfV2iV3fV4.V&iV6iV7iVUiVV|VlOlF12> 
KLfKMlXlfX2tX3iX4.X!>.X6,X7lXa.XVtXlCi«-2tr3lF:<ifF!>.F6.F7iFa.F<),F10fFll.A(6liB(6lt 

C(6>,0(t.»,t«6j,K6»,X«0,16,12l»,\fl6,l6,l2in   HINAKV   FLOAT   ISJIl 
OCL   IFXCiSXCtFXAtSXA.FXDiSXBiHUCtHUAiHUbtFr-fFFlt   RLTUKNS   (UlNAkY   FLOAT   (531»; 
EP>1.L3:      IJ«IOO;   /IJ=IJ!     CMG>l.i      IC-li 
NA"N-i;     NU-N-2S     NC=N-3J     NO»N-«;      NS-N-ü;     NF»N-6;     N7«N-7;   NNA«NN-Ij 
«A»M-15      HIJ»M-2!     HC=M-3S     MO=M-^;     ME-M-5;     MF'M-6{     MC«M-7;     /MA^HAJ 
ÜU=HNA;      UK=1./(IU;        DV>l)0*OU;      t>V = 3.6t 6/2MA;      Ürt = ZMA/3.6C6:      Ü/.=OW*OW5 
0T«.S*UU-DW:     OIW.L-.S/ZMT;      UP'l./lU.i     KL-SUKT( l .«!>. ASt:-4l*5.91E3i   KM=2.*KLS 
üA».7!>;    uli>-.15;    uc«i./6C.j    UO«l*St'   üt'l./vo.:    UF = -49./IH.; 06«-2*li 
OH«13./lO.:     01>1U7./Vl).t     OJ-17./3».:     liK«-l.l*UPi 01.«-.3t     l)M«4»M&«l 
ON=-DLS      00—7./18.S     UP>-2.7;     00'.7;     XR**.7!>;     0S>-67./ltt.i     UU»-.1»5 
OV'-ÜK;     OWB1.!>*üO; OT'l.Oi     0X«4./3*|     0V»".4|     02«2.*ÜC: 
PA«l«>*UMt PC—77./6Ü.I     PU-2.5}     Pt«-l./6.;     PF«-5./3. J 
PC--i.f<"C;   }•;;-   .2^;     P.".--üX-:OXi     CM»-&V*DVj 

MAaStlSE-^t      WÜ* 1.775t-'.;      HC-WHI      HV=2.; 
VP«3.;     HC=0.!     VC«.4   S Ml<=1.2!>E-3:      HJ«l .♦5.6,>t-4 5     WK»5.65E-4{ 

WZ«t>.L-3:     hO-MZ«WZ;      MH>2«»M6t     WL».Ü86&L14;   VFs-s. 31441:7/29.012! 
M*l>(UJ*WVI*Wi:      WN=V(>»rtl'.»WK;      HU-.«C«KH;      hl'>l.b9ljE-3S     rt0=9.t<./1. 773 5 
WR>.!>*WOi      WS-.5/1.7r3C14i      MT«-VF; WU<.106«Ml: 
HW-WA/r.143^6:      HX*9.E-3/1.420oi     KV-.ü;      VA>2.*W2t 
Vtl'MC/7.14316;   VI =C.;     vri'l.;     VÜ-2S3.i 
Hl»-0V*134.U9/1B.}     H2»DV»12. ;     rt3'=-0V*7.5;     •<4»DV*40./V.;      H5—OV*l.e75; 
W6«I»V*.48;      h7«-0V*0P; 
Hd«OU/(441.«lBC.4>ÜXi;     W9>1U60.«M);      WlC-=-675.*W6!     Mll-400.«W8i 
W12«-168.7!>«kA;      W13>43.2*W8S     Wl4ü-S*«tüM      W8>-674.'k!i*M8; KTi 
t/»«2.t2/n.*2.»2E-4n**.5/3*EI>; 
DO K-l   TO N;     DO L-l   TO KJ     2K<=K:     /.LuLi     UN*UK-VNI/ÜU; 
X(llK,L)=C/«EXP«-(WV#0N/«l.-üH))**2-<.10*2L-3.0»»»2l; 
X(2.K,LI=Ü.;      X(3,KlLI*Wl:     X(4,K.LI-V0:     X(!>,KiLI«0.;     X<6,K,L»=0.; 
ENOS     two; 
DO L-H   TO   1   UY   -1;   PUT   FILE   UYSPKINT)   EUIT   (L,(K,X(1,K,LI   00 K-l   TO NAH 
ISKIP(2liXI4I.Fm,4( SKIP,!>IX(;>',Fm.xm.E( 14.7)1 Mi     ENU; 
FXCS     PPOC   <Xl«X2,X3.X4,XS,Xbl     UlKAKY   FLOAT   (531: 
ÜCL   (Xl(X2,X3,X4,X5iXhl   U1NAKY   FLOAT   (»3)1 
F2*0A*(X1-X2)*ÜU*(X3-X4)*0C*(X:>-X6I ;      KtTUItN   (12) ;      ENU  FXCS 
SXCi     PROC   IXliX2,X3iX4,X5fX>l,X7l   ItlNAKY   FLOAT   (53): 
DCL   (Xl,X2,X3|X4,X5.X6fX7)   itlNAHY   FLOAT   (53)1 
F3-00*(X2*X3)*aü*(X4*X5)*nE*(X6*xmüF*Xl;     RETURN   IF3I;      END  SXCI 
FXAl   PROL   (Xl(X2iX3>X4iX5,Xb,X7)   U1NAKY  FLOAT   (53);   DCL   (XI,X2,X3,X4,Xi,X6,X7) 
BINARY   FLOAT   (53)5   F*»PC»X1*PÜ"X2«P£»X3»'PF*X4*PG»X5*PH*X6»Ü2*X7;   RETURN   (F4); 
END FXA: 
SXAJ PROC (Xl,X2,X3iX4,XSiX&,X7,xa) BINARY FLOAT (531; OCL (XI,X2,X3,X4,XS,X6i 

-152- 



X7(X8)   IIINAKY   FLOAT   l!>3ls   F5 = ÜO*Xl4üP*X2 + Og»X3*XR«X'.*üS«X5tOr*X&*OU*X7*UV*X0{ 
KbIUKN   U 31 :   INI)   SXA; 
FXU:   PKtJL   (XlfX2tX3iX<iiX!>fX6,X7i   UlNAKY   FLUAT   (53):   OCL   «XI ,X?, X3 ,X^,X5, X6, X7I 
BINARY   FLÜA1    (!>3)l   I 6=0W*Xl*OX*Xa*0Y«X3 + UU*X««0Z»X5*PA*X6-OC*X7;   KL'tUKN   (F6»5 
ENO  FXI«: 
SXUI PKOC (Xl,X2,X3,XA,X&,X6,X7,Xdl UINAKV FLOAT (!>3)i OCl, ( XI, xa , X3, X'., X5 , X6 , 
X7,Xll» BINARY FLOAT mj; F^-OO^Xl ♦UH*X2*(II*X3*OJ*X4«UK*X5*UL»X6*OH*X7*OU»XB J 
KGIUKN (I'/li UiO  SXU; 
HUCt PRUC (Xl,X2iX3,X'.,Xb.X6iX7,Xfl,XV> bINAKY FLOAT (5315 
OCL (xiixp.xsix'i.x'j.xb.xy.xtiixvi HINAKY FLOAT (S3): 
r8 = 0(:*Xl*t)l)«(X2 + X3)*l)»«(X/.»X5)*f)E»(X6<X7)*PM»X8tPN*X9:  KETURN (FO); END HOC", 
MUA! PKOC (Xl,X2.X3iX'i,X0fX6,X7,X»,X«*,XlO) dlNAKY FLOAT (53); OCL (U i X2,X3,X'., 
X,j,X6,X7,Xtl,X'»,X10l 1I.JAKY FLUAT (53): F V«UO*Xl ♦Ut>*X2»Og»X3*XK» X<i*ÜS»X5«üT*X64- 
uu*x/«(iv<'Xii»i'M*x9»pnvxio: KETUKN (F9): END Hü A; 
HUH:   PKOC    (XI .xr.XS.Xt.X^.XO.X/.Xb.XV.XJO)   BINARY   FLOAT   (53)]   OCL   (Xl|X2|X3iX/tf 
X5lXb|X7.XütX'*tXlÜ)   IUNAKV   FLOAT   (53):   r-lO=(H.»Xl«ÜH*X2*ül ♦X3+ÜJ*X4*0K*X5+ÜL*X6* 
ÜH*X7VllN*X(UI>M*X9*|>tM>xlO:   HLTUKN   (FIG):   CNOMUO: 
IF:   PKUC   (Xl,X2,X3tX<iiX5iX6.X7)   UINAKY   FLOAT   (531: 
OCL   (XlfX2«X3.XA,X5.X6.X7)   HINAKY   I I.UAT   (53): 
FIl='WI*Xl»HX»X2*H3«Xi»».'.<'X'.*W5»X5*H6*Xo«-Wf»X7:     RETURN   (Fill;      tNOFF; 
FFi:   PKÜC   IXl.X2iX3iX4.X5iX6fX7)   UINAKY   FLOAT   (53); 
1>CL   (XI |X2,X3|X<>|X5IX6IX7)   »INAKY   FLUAT   (53); 
Fl2»i<J<*XHW9>»X2*WlC»X3«Wn»'X'.*nl2*X5 + m3«X6»Wl«*X7;RETURN   (FI2);      ENO FFI; 
OU   10=1   TO HIT;))-   IU  >     1   THEN 00; 
IF   II)>IJ   IMTN  UCI;ü1T°5.E-0:      2Z"3.kJ«(/.IJ-l.l*DH;ZT>ID-lJti:     CHÜ = 0.5:     bN0{ 
tLst mil    2/«o.i   ii=iü!   ENU: 

DO K=l TO N:    2K«K,;    ON=(ZK-VN)/OU: 
00 L'lWi;     Il«Ll 
XlliR,L)^CZ«EXIM-(HV»üN/(I.-ÜN))^*2-(.10*(ZL-30.-Z2-3.E3»<ZT-l.)*CHC»OW))**2); 
ENO;      ENO; 
DO L=2 TU HA;    ZL«L:    DN=(/N-VN)/OU: 
X(l,N,L) = F;*FX»'(-(WV*0N/(l.-UN))**2-(,10*(2L-30.-//.-3.E3*l/.T-l..)*CHG*l)M))**2)S 
cm:    i;riii;    ELSE: 
0(1 L*2   TO  M-U     00 Ksl   TO N-ll     IK-Ki 00  J=l   TO 6;   A( JI = X{ J ,K,L);   END; 
ll7aklP*A(3t t      Ml'VN/(WM-VjK*Alä) ) ;     H2 = HK*Hl:     H3=VN»H7*in;      H4 = WN*ia*Hl; 
l(5 = WV*ll<i4H?:      1I7«VN-H7/1HM+1. 130C-3*A(3) ); 
H0-H3«*C.5;      il9~WK*(3.niK)'»(i;l-A(3)l*Ml; 
IF   K   >   3  TKLN  DO: 
Vt«UK-VNI/DUI     V2'(VN-VI)*WZ;     V3 = V2*( VN-V1);     V'» = V3»V2;      Vö = V3*V3: 
V6-liU/(/.K-VN)J     V/ = V6*V(.;VU»W2«(/NN-2K)/(ZK-VN);   V')* V4*( V6-WV) ;      V1C=V0*V8; 

IF   K   <    NC   THEN  00:   KA=K*1;   Kl«'K-l:   KC«K<2: 
KD'K-?;Kf.'K.t3;   KF = K-3;   DM   J*i    10  61 
(KJI-f XCtX(J,KA,LI,X(.l,K(»,l l,X(J,KC.L).X(J,KI),L),X(J,KC,L),X(J,Kf ,L)»*DU; . 
C(J) = SX!,iA(J) ,X(J,KA,L),XiJ,Kü,L)tX(J,KC,L),X(J.HO.I ),X{J.KE.LI .X(J,KF,LI1*ÜV; 

END; )F K >  7 THEN LX-1i   ELSE LX'6: END; 
ELSE OU; IF K=NA IHfcN (HlllX«»! 00 J-l   10 6; 8(J)=-FXA(AU),X(J.tH ,L I ,X(J.N.l » , 
X(JiNCiL)fXIJiNO,l.liX(J,N;.fLl .X(J.fiF,l. ))*:>u:  C(JI= SXA(A(J) ,X(J,NiJ,LI.X(J,M,l J, 
XIJiNCl ),X( J,Mi,L»iX<J,N'i,l.) ,X(J,NF,L),X(J,N7,L))*ÜV; END; END;  ELSE 00: 
LXd: DO .1^1 10 (<: U(.l)=-FXU(A(J),X(JiNClL)«X(JfNA.L)fX(J,NO«L) tX(JiNtl.)i 
XIJtNOiDi XU.M |LI)*ÜU:  C(J) = SXU(A(J)(X(JiNCiL)fX(J.NA.L)tX(JiNOlL)|X(J|N,L) 
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i XUiNSiLltXU.NF.U tX(J.N7,LM*0Vi   ENU;   END;   END:   EMU:     ELSE   00; 
IF  K"l.   THEN 00;  LX*t:ll() J = l   TO 4,bttHi>*0»t  C( Jl=r(-(AU) .X( Jt^.LI , X(J ,3,L». 
X(J,«,L»,X( J,5.L),X(J,6,t J ,X( J,7.« n;fcNü; 
B(5I=H :nA{l.|,XI5i2iL), X(t>,3,L»tX(5i4iL»,X(5,5.L»,X(5,6,LI,X(5,7iLH; 
CI!*)=^.«U(&I :     END;     ELSE DU: 
Vl«=«ZK-VNI/l)U;     V2»(VN-vn*WZ;     V3 = V2*(VN-vn;     V'i = V3*V2;      V^ = V3*V3; 
V6e{)U/(;K-VNI ;     V7>V6«V6:Vt(--=W2«C/NN-^K|/(ZK-VNI ;   V'> = V^*(V6-WVI ;      V10»V8*V«; 
IF   R»2   TIIEN   001   LX*2:   00   J=l   TO 6: HU l = MAU(    ) ,X (J, 3,L I t X(J , 1 ,U iXC J.A.U t 
X(J.!>fL)fX(J>6iL)|X(Jf7lL n«ÜUi        C( Jl»SXA( A( J). X( J. 3tLi f XIJ, 1 .L) .XUt^tLd 
X(J.<i,LliX(J,fc,LliX(J.7.L)iX( J(8iL))«l>V:   END;   END;     ELSE  00;   LXO;      , 
00  J=J   TO  o:   lUJMfXB(A{JI,X( J,«,L»,X( J.-J.L),X(J,5,L»,X(J,1 tLJ,X( J.fetLli 
X(J,7,LI»*l*U:        C(J)cSXIMA(Ji ,X(J,1,Ll.xtJ.2,LliX(J,5,L),X(J,l,L»,XU.6,LJi 
X(J,7,L),X(J.0»L»(*0Vi   LUO',   END;   EMI);   END; 

IF   L   >     3   THEN   00;    IF   L   <*   MC   THEN 
00;   LA = L*l:  LBH-ll  LC = L*2;  L0«L-i;;  l ü»L*3;  LF^L-S;       00 J=l   TO 6; 
OC.»»=hXC«X(J,K»LA»,X(J,K,LIU.X(J,K,LC».X(JiK,Lü»,X(J,K,L&);X(J,K,LFn*ÜK; 

EU»» 
SXC(AIJIiX(J,KiLAi .X(JfKiLliliX(JtKlLCIiX(J.K,L0l,X(JiKiL5lfXiJtK.LFn*UZ;   ENDS 
IF   L   >     7   THEN DO; 

CO  TO  SlILX);   SUHs   LY=SA;   GO   TO   SK;   Sl(2»:   LY=SS4;   GO   TO 
SRt     SU3|i   LY'SSS;  GO  TO SR:     SK'ti:   LV-S&/;  CO TU  SRI   SKbi:   LV=SS6;G0 TO SK: 
SU6>!   LY>SS1|   GU  TO  SR;   Sl(7)t   LY^SSl;   SI':   ENU;   ELSE  00:   CO  TO  S2(LX): 
$2(1):   LYsSA;   GU   TO SO;     S2(2):   LV«SS2i   1.0 TO  S(i;     S2(3):   Lf«S&3)   CO TO  SU: 
S2(<>t:   LY°SS<l;   GO   TO SO;     S2I5I1   LY^SSU;   GO  TO  SQ i     S2(6I:   I.Y^SSl:   GO   TO  SO; 
S2(7J:   LV-SSJ;     Sfi:   Ütbi   Uiüi   tLSL   DO;      H-  L«KA   iiiili 00, 00 J-i  Tu oi 
0(JI'-FXA(A(J),X(J|K,KI'.)iX( J,KtNI.X( JiK.KCltXtJ.K.MDifXtJtK.ME) , X ( J,K, Ml-») *Ürt; 

E(J»=SXAlA(J)iX(J,K,Hb»,X(J,K,HI.X(.',K|MCIrX<J,K,MO)tX(J,K,Kr:) ,X(JfK,HF), 
X(JiK.MCII*l)/.; 
ENO;   GO  TO S3(LX):     53(11:   LY-SA;   GO  10   SO;   S3(2):   LY«SS4;   GO  TO  SO;   S3(3|: 
LYsSS4;   GO  TO  SO;   S3(1|J   LY>SS6i   GO   TO   SO;   S3(»l:   LY>SS6:   GO   TO   SO;   S3(6): 
LY=SS4;   GO  TO  SU;   S3(7i:   LY»SS6;      SO:   END;   ELSE  00;   00  J=l   TO  6; 
D(JI<>-FXU(A(J),X(JiK(MCIi   X(J,K,MAIfX(J,K,HOilX(JfK,Mi.X(J,KfMEi,X(J,K,HFn*OWS 

E(Jl>SXn(A(JliX(JfK«HCIi   X(J,K,MA!,X(J,K,hüJ,X(J,K,K|,X   J,K,Mt;l,X(J,K,(1H», 
X(J.K,MÜ»"DZS   END;   GU   TO  S4(LX);     S4(Ut   LY=SA;   CO   TU   SM;   S4(2|:   LY>SS4; 
GO  TO   SH;S4(3):   l.Y»SSSl   GO TO  SM;   S't(4i:   LY=SS7;   GO  TO  SM:S'<(äl:   LY«SS6;  GO 
TO   SM;   S4(6|s   LV=SS5|   GO  TO   SM]   S<i(7|:   LY--S$7;   SH4   ENO;   END;   ENO;      ELSE  DU: 
IF' L=2   THEN  00;   DU  J*l   TO 6; 
0(J>=FXA(A(J»,<(J,Ki3»,XtJ,K,l»,X(J,K,4),X(J,K,S),X(J,K,6),X(J,rv,7»l*0H; 
E(J)*SXA(AUIiX(J,K,3t,X(JlKfllfX(J,K,<it,X(J,K,:i»iX(J,K,6)iX(J.Kr7),X(JiKiaii*0 
Z   I   ENO;   GO  TO S5(LX»{   S5 (11 :   LY-SA;   GO TO SK;   S!»(2»s   LY=SS2:   GU TO SK;   SM3I: 
LY-SS2;   GO TO  SK;   SSUli   LY-SS8;   GU  TO  SK;   Sö(5M   LV=SS8;   CO  TO  SK;   S5(6|: 
LY=SS2;   GO  TO  SK;   S5(7|:   LY-SSS;   SK:   ENO;   ELSE  00;   00  J«l   TO  6; 
0(J» = rXU(A( J),X(J,K,4),X(J,K,2>,X( J,K,'j|,X(J,K,U ,X(J,K,6I , X( J ,K,7 » »♦OH; 
E(JJ=SXB(A(JI,X(J,K,4l,X(J,K,2»,X(J.K,51,X(J,K,n,X(J,K,6l,X(J,K,7>tX(JfK,8»l*0 
z : END; GO TO S6(LX): 
S6(l)s     LY=SA;   GO  TO SI;   S6(2J:     LY=SS2:   CO TO SI;     S6(3I:     LY=SS3:     CO TO  Si; 
S6(4»!   LY=SS9;     GO TO  SI;     S6(!>):   LY-SSO:     CU  TO   SI;      S6l6i:   LY»S&i|     CO TO  SI; 
$6(7):   LY=SS9;     SI:     END;     ENO:     GO TO LY;SS1:  00  J-9  TO 6; 
F(JI=MÜC(A(J),X(J,KA,LA),X(J,KB,LÖ),XIJ,KC,LCI,X(J,KÜ,L0),X(J,KE,L5),X(J,KF,LF) 
fC(J)|E(J))*OT;   END;     GO  TO  SU;     SS2:     00 J=5  TO  6; 
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F(J)=IU)AIAIJ) ,X(J,K4l,L + n,X(J,K-ltL-l).X(J,Kt2,L*2) ,X< J ,K»3,L*3» ,X( J ,K*'.,L*-'»» i 
XtJ.Kf^.L*?.» ,>;(.),K<6,1 ♦<>) ,C(Jt,l ( JD^UIJ      ENU:     GO   TO   SB]      S$3:   DO   J«S   TO  6] 
F(J)=ML>H(A( J) ,X{J,Kn,L + H,X( J.K-l.L-UiXJJ.K^Z.L+a) ,XlJ,K-2,l-2t i X (J ,K*3,L*3I i 
X( J.K+ii.L*'«! ,X( J,K«5fL*5l ,C1JI ,t( JI)*UT;   ENDS   GO   TO   SO;   SS<.:   DO   J = 5   TU   h; 
F« J)=--Mt)A(A{Jl,X( J,K<l,L-l>,X(J,K-l,L<l).X(J,K*2,L-2)iX(JfK*3,L-3liX(J,K*'VfL-A» 
t . 
KCJiK + i-.L-b) .X( J,K+6,L-<.I ,C(JI ,f.«J| I^CJT}   tNUS   GO  TO   SB;   SS5:   00   J=ö   TO   6; 
r-( J)=-HLiO<A( JI,XJJ,K*ltL-lliX(J,K   1,L+1 »tX(J,Kf2,L-2liXtJ,K-2iL*2l t X( Ji K»3tL-3» 
i 
X( JIK + 'ML-'II IXIJ,K+'JIL-5I ,C( JJ ,1:1 Jl J*l)T;   LMDS   00   TO   SB;   SS6:   00   J^S   TO   6; 
F(J)aMUACAU) ,XtJ,K~l,L-l),X(J,K+l,L*l),XU.K-2,L-2),X<J,K-3,L-3»,X«J,K-'»,L-4l, 
X{J,K-li,l.-b) ,X1J,K-6,L-6I ,C(J),t .J)Kür;   iiNÜ;   ÜÜ   TO   Sb;   SS7:   DO  J = 5   TO  6; 
F(J»=M1)IJ(A(J) ,XtJ,K-l,L-l),X(J,K+l,L + ll,X(J,K~2,L-2) ,X( J ,I. + 2,L*2» ,X( J , K-3,L-3'» , 
X( utK-'ML-'»».^ J,K-r>,L-ti),C(J),l.lJ'N*DT;    ENOj   GO  TO   SU-;   SS8:   00   J = 5   TO   6; 
Ft J)=-H0A(A(U)fXlJ,K-l,L+l),XlJ,Ktl,L-n,X(JlK-2,L«2»,X(JlK-3,L*3» iXt J,!'«-*,^**! 
t 
•XlJ,K-b,L+5) ,X(J,K-(.,l.<6),C«J),r(JI >*üT;   UND;   GOtO  SB;   SS9:   00 J = 5   TO '6; 
FU)=-HI>BtA(J»fX(J,K-I,L + )l,X(J,K+l,L-nlX*(J,K-2,Lt2),XtJ,K*2iL-2»,X(JfK-3iL*3» 

XU.K-'f.L + 'i) ,XU,K-5,l. + 5) ,CtJ),ttJ))*0T.;  WH)',   GO   TO   SM 
'SAS   HA"A«6I*:)(3» ;   lll>=A( ll«A(l)liA»2)*A(«l;5:      Y« 3 , K', 1.1»-(HA+A( 3I*( 0< öl^VA^Ul SlV) 5 
MU»ll,J*Y(3iK,L»*V(.H,KiL'J •   M( =H'-.*Yi 3 .K.LT-; ,HH=WS«HU+WL*Hg; 
wiisVi^Ad);     wi=vr*A('i»; 
V«4,K,l. l = (r(U*lwH*CI'.»*t(<ill*WW*(ü(6l*ü(ö)*WH«U'(i)«5(5) ) + VI •!■( hü»OC S'»*!!« J.1 
♦ WH*U t i I «0« 6) I ♦ hi;« ( Y CJ, K , L ) 1 HA I >HX«HB»HU J M( i I 
-Al6)*n('.»;    Y(5,K,I.)=-0. ; 
y(6,K,L» = (W»:«013»*WA'i;(6)+W0*C(6)l/A(3)-(WT*0<'.)>A'(6)*0(6) ) ♦WY*(H'i*(Ä{i'» *ü( 1) 
4Al?l<n(2l l + IJY*Hrj*Mh*D(3n; 
V t 1 tK., L I =H7 * ( V.0* ( V.G^C ( 2 »♦WY »t ( 2 ) - Kl »D (l) ) -HH* A( 2) -HF * A( 1)1; 
Y(2,K,U = H7*(~V.CJMW0CUMWV»(;( 1 ) <KL*l)(2l )+MH*A( 1 J-HF*At 21 J ;GÜ   TO   SC; 
SUJ   HS = V3*A(,.>1;   rtA = IIS*U(3l4A(6)*t)(3l;   lit*4 A( !>) wA( !»♦ A(2)*A( 2) ;   HE*WY*Hl»*H55 
Y«3,K,I. » = -(A«3l*( V3'!'ü(!)l+Vb*A('JMl)(<.)»i.,'A);   IIF=H'i*Y( 3-,KtL ) ; 
H0=M,>*Y(3IK,LI*V(3,I<,J. J ;      HH=WS*Mü+WL»HV; 
Ht=Vt«A<^);     wi=vi*/'"t); 
YU.K.L)* JWU»m»f      il+VV*IM'iHtl/.)»*hW*«V5«B(5)*B(5)+V10'*A(!>J*A(!i)tD(6)»'0(6n 
♦ VH»IWV'*V3*i.l(6)*ni* )<V:>»ül6|#ll{6j*U(5l>vU(tin«VI*(Vtt*<HS*i>(5)tA<5»*Ü((.» » 
♦ V3*ti(,jl*D(6) )»ttl w|Y(3,K,LI*HA» + h,X*MB*Hi)l/A(3|-<ilS'»ri('»)+A(6J*U<4) )< 
y(5,K,LI = (WC*f( bHV.ti«lhe»r(6HwF*B(3» » + WA«(V5*C(5nV9*B(5»-V10*A,<51)l/A(3) 
♦ V3< {WY»(H1*(A( U*tUUAU)*ftl2J l*Ht*lU?>) l-(WT»B(4l< Al !> I*IM i)) )-A(6)i*Ü<Mi 
Y(6iKlL)-(i.'l;«lM3)tl.,B*(V3*r(b)*V(i*U«5)*1(6l )*bC* (V5»C( 6H-VV*i)( 61 ♦£( 6») J/A( ^1 
-IWT'!l)('.UH3*l»(6»+A(6)*0(6) I ♦hY-.MH'»*( AUl «ü U ) + A( 2 I «■01 2 J 0 mt:*t)| 3» » 5 
VIl.K.LI 

r-HY* (WR*m*C ( 2 ) +V<)*n ( 2) ♦{•" (2 l-KK*IJ i 11 ) -HH* A( 2) -HF* A< U li 
V^tKfL»'1H7*(-WK*JVS«CMMV«»*ß(n*tJlKKn«üUj »♦Mri*A< l1^HF'i'A(2) > ; 
SC:   tNU»   EHO;   DC)  L--2   T(l H-l;   IW K«l   TO N-U   00 J=l   TO h) 
XIJiK,L» = X<J,K,LI+V(J,K»L)-»ülT;   fcNO;   CNDt   END; 

IF   10^20   IHtN   GO   TO tS;   CLSf: 
IF   ID-'tO   TMLW  GO   TO  J.S;   ILSE 
IF   10-60   TUCH  GO   TO   LSI   ELSE 
IF   10=80  THEN GO  TO  LS;   fci.SE 
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IF   IIIBHTT  THEN  CO   TO  LS:     ELU.   GO  TO RRJ 
L^t     00  L»M  TO   1   ÜY   -1}     DO K»l   TO  HA;      Y(3,K,L l = X< 3iK,U-Wl!     Y(4,K,LI» 
XU.K,LI-VO;      00  J-tf2»&t6l      Y(J,K,LI=X(JfK,L)S     UNUI      ENU;      ENUi 
DO J-l   TO 6; 
POT   FILL   «SVSPKINT»   PACErDO  L«M  TO   I   EY  -l|      PUT   FILE   (SYSPKINTJ E 
OIT   (lD,J,L,(KtY(J,K,LI   l'ü K = i   TO  NAI»   ( SKIP(2I »3 (X141 .F ( 3) I . 4( SKIP.!»(XI •>) .F (2t 
.X(2) tEdA.T))!):     feNOl      END: 
PUT   FILE   «SYSPKINTJ   PAÜE; 
G1-Ü.:     00 L^M  TU   1   IsY   -l:     DO K=l   TO NS      ZK=K!     Vl = ( ZK-l. »»OX: 
Vl=Vl/(VN-Vl)**3j 
YM,K,LI = X(1,K,L»*X(1,K,L)»X(2,K,LI*X(2,K,L»}      Y j 2 ,K,L » =Vl»Y( 1, K, LI {      END; 
00  K=l   TO  N-2   BY  2; 
Cl(Ll=GHLI*Y(2,K,LM'..*Y(2,K+l,LI+Y(2,K+2iLI;     END; 
61Ui"3tl41S93l:l,0/WO<i>UUL)*DX| 
UNO;      DO   L*M   TO   1   ÜY   -I;   l'WT=0.;     ÜU  LL«L   TO  H-2   BY  2;     PWT"('HT«Cl (LLI 
♦ 4.*GHLL*n+OMLL*2l;      fcND;IFLL<K-2     THEN   PWI=PWT*.5«(   GU fl-l I »ÜUMII ; 
PWT=üY*PWT/3.;     DO  K>1   TU NA;   Y(1tK.Ll-SORTIYd.KILI I;END; 

PUT   FILE   «SYSI'RINTI t 
DIT   t lüiJ,L,(K,Y(l,K,LI   DO K=l   TO  NAI I   I SKIP(21,3 t XCtl iF d 311,4( Snlf',51 X( ^1 ,r ( ^» 
.X(2I.E<K.7}|ll; 
PUT FILE (SYSPKINTI EDIT (Cl(LI t I'hTI (SKIP«2(X(2I(E(14.71 I I;  END; 
RR:  ENU;  IF IC«1  THEN DO;  IC=0; EP>3.E3;  IJ^lOO; ZIJ^IJ;  CMG-1.: 
DlT^l.E-T; 
CO TO RT;  END!   END; 
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ILLUSTRATIONS 

Figure 1.     Fore and Aft Symmetry of the Laser Pulse. 

The on-axis magnitude of the electric field.    |E|,   is shown as a 

function of  |z - z   |   at four different times.    As shown in Eq.   (200), 

z    tact locates the center of the pulse.    The solid curves show the lead- 

ing edge of the pulse and the dotted curves depict the trailing edge.    Dis- 

tances along the z-axia are expressed in units of the grid size: Az = 0.45km. 

The quantitv   |E|   shown is defined in Eq.   (197), so that the exponential 

damping factor is not included in the graphs. 

Figure 2.    Details of the z-profile of the Electric Field. 

For detailed comparison, the z-profile of the on-axis electric field, |E|, 

is shown at several times.    The unit Az is used for distances along the 

z-axis.    The curves have been displaced to the left and the leading edges 

made to coincide at height lOOOj^^j* for   |E).    The abscissa for this 
\cm / 

intersection of the curves has been labeled 42. 5, the location of this point 

at t = 0 . 

Figure 3.    Radial Profiles of the Laser Pulse. 
j    ; _5 

The radial profile of  |E|   is shown for t = 0 and for t = 10    sec for 

slices taken thioughthe on-axis maximum,  z_, in the z-profile. 

Figure 4.    Details of the Radial Profile of the Laser Pulse. 

Details of the radial profile are shown for various times.    In all four cases 

the radial slice through the on-axis maximum of the z-profile is exhibited. 
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Figure 5.    Off-axis Maximum in Laser Pulse. 

An off-axis maximum in the radial profile is shown at t = 10  "sec.    The 

slice shown exhibits the radial profile at z = 31, whereas the principal 

peak of the pulse is on-axis at z = 35. 3 .    The slice at z = 31 contains 

the greatest off-axis effect and, therefore,  locates the two secondary peaks 

which have developed in the pulse.    These secondary peaks are also indi- 

cated on Figure 9. 

Figure 6.    Phase of the Electric Field Amplitude. 

Phase information is presented by showing   IE, |  as a function of z at 

t = 6 X 10"  sec.    For comparison, the dashed curve shows |E|.    Equa- 

tions (162 ) and (197 ) of the text define   JE^   and   )E|. 

Figure 7.    Phase of the Electric Field Amplitude. 

At t = 8 X 10'  sec.,    |EJ   and |E|   are shown on-axis as functions of z. 

Two nodes have developed and E. is negative in the region of the power 

peak.    The sign of E, in the various regions is indicated on the figure. 

The nodes are also shown in Figure 9. 

Figure 8.    Phase of the Electric Field Amplitude. 

At t = 10"  sec. ,   JEjl  and   |E|   are shown on-axis as functions of z. 

The sign of E, is indicated in the various regions.    There are now four 

nodes.    The nodal curves are phase fronts and are shown in detail in 

Figure 9. 

Figure 9.    Configuration of the Laser Pulse. 

Various properties of the pulse are shown in the rz-plane.    The loca- 

tion of the peak in the z-profile is shown as a function of r at t = 0 and at 
-5 -5 t = 10     sec.    The phase fronts with E, = 0 are shown at   t = 10     sec.   The 

-6 open circles locate the z-profile nodes of E, at t = 8 x 10     sec.    The 
-5 small squares locate the secondary maxima of the pulse at  t = 10     sec. 
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Figure 10.    On-axia Temperature Diatribution. 

The on-axis temperature increment, (T - T ), is shown as a function of 
-5 z at t = 10    sec. 

Figure 11.    Radial Temperature Profile. 
-5 The radial profile of the temperature increment is shown at t = 10    sec. 

for the slice through the maximum of the z-profile.    This maximum is at 

z = 33 as may be seen in Figure 10. 

Figure 12.    Fluid Velocity Distributioi\On-axis. 

The z-component,  v , of the fluid velocity is shown on-axis as a function 
-5 z 

of z at t = 10    sec.   A double log plot is used which omits values of v 
-3 -3 z 

between 10    cm/sec and -10    cm/sec. 

Figv.re 13.    Radial Fluid Velocity Distribution. 

The radial component, v ,  of the fluid velocity is shown as a function of 
-5 r 

r at t = 10    sec.    The slice is taken at z = 32, the location of the "center 

of velocity" shown in Figure 12. 

Figure 14.    Fluid Density Distribution,  On-axis. 

The on-axis fluid density decrement,   -(p-p ),   is shown as a function of 
-5 0 

z at t = 10    sec. 

Figure 15.    Radial Fluid Density Distribution. 
-5 The radial density distribution is exhibited as a function of r at t = 10    sec. 

The slice is taken at z = 32, the location of the density minimum detailed 

in Figure 14.    A double log plot is used which omits values between 

10-9.8«i_   and    -io-9-^  . 
cm cm 

Figure 16.    Parade of Laser and Fluid Pulses,  On-axis. 

On a double log plot,  the various laser and fluid variables are simultaneously 

plotted versus z at t = 10' 

pulses can be visualized. 

-5 plotted versus z at t = 10    sec so that the spatial location of the various 
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Figure 17.    Locations and Widths of Laser and Fluid Pulses. 

The location and full —widths of the various laser and fluid pulses are 
C 

shown versus z.    The peak to valley distance is shown for v .    The initial z 
and final locations of the laser power peak are also indicated. 

Figure 18.    Self-curving Effect of a Laser Beam in the Presence of a Wird. 

The self-curving effect of a laser beam in the presence of a wind is in - 

dicated.    The angle  t> the deflection angle, increases with z.    The density, 

permittivity, or index of refraction profile is sketched to indicate the cause 

of the curving. 

Figure 19.    Thermal Blooming of a Laser Beam. 

The thermal blooming of a laser beam in the absence of wind ia indicated. 

The angle f-,  the deflection angle of the outer edge of the beam, increases 

with z.    The density, permittivity, or index of refraction profile is 

sketched to indicate the cause of the blooming. 

Figure 20.   Cross-section for Scattering into Various Curvatures. 

The normalized cross-section for scattering of power into various curva- 

tures is sketched for small wind speeds,   X = 0,1,3.    The distribution ex- 

tends from  ?min/?B to  SJ^-JJ/S» for each X. Already at X = 3, the dis- 

tribution is sharply peaked at  ? = ?        .    All the curves must pass 

through the vertical axis at height 0, 5 and have an asymptote at   5/?^, = 2 . 

Figure 21.    Effective Optical Elements for Blooming . 

The effects of a wind on the beam are indicated.    When X = 0, pure ther- 

mal blooming occurs; the light rays bend as if passing through a symmetrical 

double concave lens at each point in the path.    For X ^ 0 the effective lens 

is converted into a large prism with a small defocusing lens perched on 
the downwind vertex of the prism. 
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Figure 22.    Peak Displacement at Detector for Experiment of Smith and Gebhardt. 

For the experiment described in the text,  the beam is viewed with a detec- 

tor located 20cm from the end of a 100cm wind tunnel.    The peak displace- 

ment into the wind,   Y  /a, is shown as a function of velocity.    The nota- 

tion is explained in Part VI of the text. 

Figure 23.    Intensity Profiles at Detector for Experiment of Smith and Gebhardt. 

Intensity profiles predicted by equation (290) of the text are shown at 

aL = 0.5  for v    = 2cm/sec    and   10cm/sec.    The original beam is also 
shown. 
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Figure 2.     Details of the z-profile of the Electric Field 
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Figure 19.    Thermal Blooming of a Laser Beam 

-180- 



ID 

I 
Ü 

Ö 
0) 

TO 
< 

1.5 2.0 
e£ B 

Figure 20.    Cross-section for Scattering into Various Curvatures 

-181- 

. 



Pure Thermal Blooming Blooming Wind Prism 

r*B 

■——if 

B 

mm 

t   I   t 
max 

No Wind 

X=0 

Wind 

\«3 

Figure 21.    Effective Optical Elements for Blooming 
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Figure 23.    Intensity Profiles at Detector for Experiment of Smith and Gebhardt 
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rather than the angle about the beam axis, much more pronounced evidence of 
beam and fluid instabilities would likely have been observed for substantially 
lower powers, powers that may be achievable.    Arguments supporting this 
proposition are contained in Part V. 

Part VI of'thjii report contains an analytic discussion of beam bending and 
the'rmal blooming for a slab beam propagating through a wind.   A formula is 
derived which provides for the transition between two regimes in which con- 
duction and forced convection,  respectively, dominate the dissipation of heat 
deposited in the medium from the laser beam.    This formula appears to be 
useful for the analysis of several experiments.    '^ 


